Micro dependability measurements RIPE MAT WG

Olav Kvittem UNINETT 2019-10-17

The Dragonlab particpants

Participants

- U.Auckland, RNP(Brasil), Cernet(out but co-initiator)
- Nordunet, Sunet, Uninett, NTE(commercial)
- Switch, Cesnet, RedIris, Aarnet
- Cloud : Amazon, Azure, Google
- NTNU university : PHD's and MSC's
- Measurement setup
 - 100 packets per second with timestamps
 - Traceroute
 - analyze packet behaviour around loss events into ELK
 - 50 ms ITU failover time

Outage stats

- Sep 2019 lost 1.5 hours in 2000 gaps
- Might be the same actual outage hitting many
 - Site power loss 12 minutes
 - Router upgrade 2 minutes
 - Fiber instability (10*1 min)
 - Dual router reboot 20 minutes..
- Oddities
 - Old packets sent on when link comes up hours afterwards
 - Tails of routing loops low TTLs

September outages > 500ms

Traceing rerouting

Traceroute charts /dragonlab/mp/trondheim-mp/20170626/trace/

Queueing time

Jitter heatmap dragonlab

Jitter sum distribution dragonlab

Queue buildup to congestion loss

Packet delay increases with 400 ms in 150 ms

Unreliability – max 711 ppm, average 86 ppm

from.keyword: Descending =	to.keyword: Descending =	Average down_ppm
saopaulo-mp	amazon-mp	711.253
saopaulo-mp	trondheim-mp	573.61
saopaulo-mp	adelaide-mp	537.161
amazon-mp	saopaulo-mp	509.679
saopaulo-mp	amazonff-mp	433.633
saopaulo-mp	googleeu-mp	407.333
madrid-mp	amazon-mp	389.398
saopaulo-mp	madrid-mp	312.583
saopaulo-mp	zurich-mp	271.626
praha-mp	stockholm-mp	177.997
amazon-mp	stockholm-mp	176.32
praha-mp	madrid-mp	173.292
madrid-mp	saopaulo-mp	170.666
praha-mp	trondheim-mp	163.699
praha-mp	adelaide-mp	162.901
copenhagen-mp	sunet-mp	147.176
zurich-mp	saopaulo-mp	134.68
amazon-mp	googleeu-mp	125.361
trondheim-mp	saopaulo-mp	117.765
adelaide-mp	googleeu-mp	115.381
		86.826

Lessons learned

- Rerouting takes time..
- BGP passive mode took 2 minutes to learn new route when primary router rebooted
- Writing full routing table contributed probably to 79 secs on a fibre-instability – 10 outages one day = 790 seconds
- PIC Prefix Independent Convergence
 - Tree-shaped forwarding table
 - Only one alternative ..
- Deflect routing before maintaining routers
 - =>Not detected on a 10ms scale
- IGP (IS-IS) optimalization
 - «loop-free alternate»
 - «fast re-route» via MPLS
- Still a lot to be learned
 - About BGP ??

Further work

- Into production with basic analysis
- Open issues
 - Automated classification of outages ..
 - Combine gaps with :
 - BGP announcemens RIPE BGP logs
 - ISIS state via I-BGP
 - SNMP Traps
 - ICMP back scatter (network unreachables)
 - Traceroute hickups
 - .. ?
- Data are available 10 years of data
 - 300TB raw logs
 - Reduced data one record -gigabytes

Better coverage

- Own scripts
 - 17 nodes Dragonlab
- Custom debian packages
 - 50 nodes in uninett
- Perfsonar research networks (CERN, Internet2, EU, Esnet)
- RIPE Atlas
- .. ?

References

- Project : https://in.uninett.no/dragonlab/
- Talks :
 - Nordunet technical workshop 2016
 - GEANT SIG-NGN Next generation Networking
 - GEANT SIG-PMV Performance Measurement and Verification
 - Terena Networking Conference 2017
 - Perfsonar project
 - Rutevisualisering implementert
 - IRTF Measurement of Protocols WG (Maprg) 2019
 - Simula workshop on BGP security
 - Møte med Broadnet

