
Default stack and other evils
Bloody story of RPKI Validator

Mikhail Puzanov

RIPE NCC

RIPE NCC RPKI Validator
➔ RPKI validator project is a part of our Resource Public Key Infrastructure suite of

RIPE NCC.

➔ It is daemon installed on the user’s servers.

➔ It has to be relatively humble with resources.

➔ It has to be stable and reasonably fast on a wide range of platforms and hardware.

➔ It has to put reasonable configuration burden on the users (don’t ask them to

install and configure an RDBMS or http proxy).

➔ We have to think about corner cases more than for internal services working in

our data centers.

What does RPKI Validator have to do

➔ Has to validate ~60000 signed objects of total size slightly above 100mb.

➔ Data is updated, all the updated data in 7 days would be 2-3 gigabytes.

➔ This data (normally for 48 hours) is stored in a local database by the validator.

➔ Above 900 000 BGP announcement total, more than 10% or them are signed.

➔ With the currently used Java crypto-libraries (bouncycastle) validation for all trust

anchors takes about 90-120 seconds on one modern CPU core.

➔ Almost linearly faster with more CPU cores.

RPKI Validator
➔ RPKI Validator 3 is the current version

➔ Validator 3 started as a replacement of Validator 2 (there was a version 1 long ago)

➔ Validator 2 had problems

◆ Memory consumption (above 3.5Gb for the current size of the repositories)

◆ Rare, but recurring stability issues (OOM, embedded database corruption,

database deadlocks)

◆ It’s written in Scala and it’s hard to expect PRs from the community.

➔ Let’s rewrite it.

➔ Let’s rewrite it in Java 8.

RPKI Validator 3
➔ Written using all the “default” classical Java stack

➔ Spring Boot for DI and REST API/HATEOAS

➔ H2 as an embedded DB with Hibernate ORM

➔ More extensive, normalized data model for smarter behaviour

➔ A lot of in-memory data moved to the DB

➔ Quartz for multiple types of jobs

➔ Angular for the UI

➔ Project took about 10 months to deliver.

RPKI Validator 3

And then Validator 3 had problems (surprise-surprise)

➔ Memory consumption (aimed at 1Gb heap, much less than version 2, but we still

got regular OutOfMemoryException’s)

➔ Multiple stability issues: “doing nothing”, “slow start”, “crashed and stuck”, … etc.

➔ H2 database size goes through the roof for some users (we had a bug report about

50Gb).

➔ Very slow “warm-up” in some cases.

RPKI Validator 3 - engineering pain
➔ Task scheduling in Spring sometimes just “doesn’t work”.

➔ Hibernate keeps unpredictable amount of objects in memory, resulting in OOMs.

➔ Some Hibernate queries are slow to the point of REST API calls timing out.

➔ Concurrent work with the DB causes weird race conditions.

➔ Transaction management is hard to get right.

➔ H2 not always recover after application crash

➔ H2 doesn’t have online garbage collection, so the database only grows.

➔ Combination of ORM and query planner from H2 is not always efficient,

resulting in very slow queries.

RPKI Validator 3

➔ A few months of fixing bugs almost every week.

➔ Growing user base and growing number of bug reports.

➔ We needed to change the design.

➔ We need to change embedded DB, the core of all troubles.

RPKI Validator 3 - LMDB to the rescue

➔ It’s been there for quite some time and it is proven to be reliable.

➔ Dead simple: ordered key-value store where both keys and values are byte arrays.

➔ Low-level Java-bindings in lmdbjava library with tiny native library.

➔ Full ACID with snapshot CC: readers don’t block writers and vice versa.

➔ MMAP implementation, zero-copy reading, no configuration, no cache

management, no WAL, no separate compaction steps, instant crash recovery.

➔ LMDB is faster than even the low-level back-end of H2 in almost all benchmarks.

RPKI Validator 3 - LMDB bright side
➔ Literally every database query became faster, from “a little faster” to “orders of

magnitude faster”.

➔ “Associated 35650 objects with the validation run 0000000000000014 in 58ms”

➔ Able to respond to REST API calls with good latency under CPU usage of 600%.

➔ 2-3 times smaller database.

➔ Quick start and shutdown, not a single case of “cannot restart after dirty shutdown”

in two months of testing.

➔ Heap size went down from 1Gb to 640Mb, without “out of memory” problems.

➔ Multiple strange bugs disappeared at once.

RPKI Validator 3 - LMDB dark side
➔ No type-safety, everything is a byte array, really low-level basic API.

➔ Database is not self-aware, no metadata, no schema and no schema migrations.

➔ Had to implement serialisation and indexes ourselves, type-safe key-value maps,

safe transaction API, etc., code base grew pretty significantly.

◆ SLOC before LMDB ~11000

◆ SLOC after LMDB ~15200

➔ Native library in dependencies.

RPKI Validator 3 - LMDB ugly side
➔ Got bitten by a Data Corruption Bug!

➔ Very rare and very subtle: some values (1 or 2 out of 100000) are corrupted after a

couple of days of running, happens on Linux and Mac, but not *BSD.

➔ Very hard to reproduce. A month of work to figure out where exactly it comes

from -- no result.

➔ We believe it’s somewhere between JVM and the mmap-ed off-heap segments, not

in any Java code and not in LMDB itself.

➔ Positive side effect while fixing: reduced the amount of updates to the minimum.

➔ Had to give up and find yet another DB.

RPKI Validator 3 - Xodus to the rescue
➔ Another key-value store with a some fancy features on top.

➔ Written by JetBrains in pure Java, no native libraries in dependencies.

➔ Pretty much the same ACID semantics as LMDB.

➔ Reasonable performance: bearably slower (2-3 times) than LMDB on average.

➔ Even smaller database with better space reuse due to using multiple files.

➔ The only flaw so far: high memory consumption by large writing transactions, had

to increase Xmx from 640 to 1024 and then even to 1536mb by default.

➔ No crashes, no data corruptions, nothing really bad or very exciting about it.

➔ Tested for a month and ended up in version 3.1.

Lessons learned

➔ As a rule of thumb, do not use Hibernate whenever resource usage has to be

under control.

➔ As an even better rule of thumb, don’t use Hibernate at all.

➔ H2 looks neat at first but is not very reliable and unpredictably eats disk space.

➔ Spring Boot is slow, eats memory and doesn’t really do much more.

➔ LMDB is great, but there’s something fishy going on between LMDB and JVM.

Lessons learned

➔ Measure performance. Talking about performance without solid numbers is

almost always waste of time, most of the assumptions happen to be wrong.

➔ Solid numbers are hard to get. VisualVM sampler “lies”, VisualVM profiler “lies”,

System.nanoTime() “lies”, correlate all of them.

➔ There is a sweet spot between offloading work to frameworks and writing code

manually. We went towards the first option way too much and paid the price.

➔ Spend time on research, don’t pick up the “default stack” right away.

Finally

➔ RPKI Validator 3.1 is pretty stable, we haven’t seen stability bug reports.

➔ We plan to work on it mainly to improve usability and packaging.

➔ It is yet to be decided what is going to happen with it the future.

