
Danish: HTTPS DANE Validation on Linux
Andrew McConachie

Image courtesy Wikimedia Commons

DANE Overview
• Presentation Assumptions
• Basic knowledge of DNS and DNSSEC
• Basic knowledge of the Public Key Infrastructure (PKIX)

• X.509 Certificates
• Transport Layer Security (TLS)

• DNS-Based Authentication of Named Entities (DANE)
• Defined in RFCs 6698, 7218, 7671
• Ties X.509 certificate trust to DNS
• Starting to be used in SMTP but very little use for HTTPS

• TLSA Resource Record
• Contains the cryptographic hash of an X.509 certificate
• Plus other stuff ..

TLSA Records

• Certificate Usage
• 0 – PKIX-TA (DANE && local store)
• 1 – PKIX-EE (DANE && local store)
• 2 – DANE-TA (DANE only)
• 3 – DANE-EE (DANE only)

• Selector
• 0 – Full X.509 Certificate
• 1 – Subject Public Key Information (SPKI) “public key”

• Matching Type
• 0 – No hashing used
• 1 – SHA256
• 2 – SHA512

_443._tcp.www.digid.nl. 900 IN TLSA 3 0 1
DDC85B7EDAA3F3C65A34AEAD4C5A36DB2677065F659D5A554AB56E2C2EDC5F8E

Danish History
• First presented at ICANN 59 in June 2017
• Written in Python
• Only ran on OpenWRT

• Rewrote Danish in 2019
• Written in Rust
• Supports both middlebox and host operation on Linux
• BSD-3 licensed

• I have been DANE validating HTTPS traffic for about 3 years
• Primarily an exercise in NXDOMAIN generation
• I have also found some TLSA records in the wild

What is Danish?
• Linux daemon for validating HTTPS DANE
• Sniffs TLS Handshake traffic with lib-pcap

• If validation fails ACLs are installed to deny traffic
• Uses iptables extensions to deny access to specific TLS SNIs

• Uses lib-resolv as DNS stub resolver
• Does not perform DNSSEC validation

• Can be run on firewalls or end-hosts
• iptables chains FORWARD or OUTPUT

• Can block SNI based on DNS Response Policy Zones (RPZ)
• Look up TLS SNI in DNS
• If NXDOMAIN à install ACLs

• Supports TLS 1.0 - 1.2, IPv4/IPv6

Operation
1. Sniff HTTPS TLS ClientHello and ServerHello messages
• Parse Server Name Identifier (SNI) from ClientHello
• Parse X.509 Certificates from ServerHello

2. Perform DNS TLSA lookup for comparison
3. If no TLSA RR found à Do Nothing
4. If X.509 Certificate and TLSA RR match à Do Nothing
• Danish has no local certificate store

5. Else install ACLs to block client traffic to offending web server
• 2 short lived ACLs to force TCP timeout
• 1 long lived ACL to prevent further egressing TLS ClientHellos with matching SNI

• Installed for both IPv4 and IPv6

Validation
Failure

time

TLS ServerHello

TLS ClientHello

TLSA Query

HTTPS GET

DanishClient Web Server

ACLs Installed

Validation Failure ACL
iptables --list -n

..

Chain danish_69763cbbe640ba4f2d86 (1 references)

target prot opt source destination

DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:443 STRING match
"|0000001b00190000166261642e6d6964646c65626f782d64616e652e6f7267|" ALGO name bm TO 65535 /*
bad.middlebox-dane.org */

DROP tcp -- 192.168.1.153 95.179.156.120 tcp spt:33256 dpt:443

DROP tcp -- 95.179.156.120 192.168.1.153 tcp spt:443 dpt:33256

RETURN all -- 0.0.0.0/0 0.0.0.0/0

HTTPS TLSA RRs in the Wild

_443._tcp.access.ripe.net. IN TLSA 3 0 1

_443._tcp.danetools.com. IN TLSA 3 1 1

_443._tcp.defcon.org. IN TLSA 3 0 2

_443._tcp.digid.nl. IN TLSA 3 0 1

_443._tcp.www.freebsd.org. IN TLSA 3 1 1

_443._tcp.frobbit.se. IN TLSA 3 1 1

_443._tcp.login.enterprise-email.com. IN TLSA 3 0 1

_443._tcp.mail.pab.ro. IN TLSA 3 1 1

_443._tcp.mijnoverheid.nl. IN TLSA 1 0 1

_443._tcp.mijn.overheid.nl. IN TLSA 1 0 1

_443._tcp.overheid.nl. IN TLSA 1 0 1

_443._tcp.posteo.de. IN TLSA 3 1 1

_443._tcp.sys4.de. IN TLSA 3 1 1

Never see certificate usage 0 or 2.

CLI Options
• -c, --chain <OUTPUT | FORWARD>
• iptables/ip6tables top chain [default: OUTPUT]

• -i, --interface <device>
• pcap device to listen to [default: eth0]

• -s, --sub-chain <sub_chain>
• iptables/ip6tables sub-chain for ACLs [default: danish]

• -r, --rpz
• Enable Response Policy Zone (RPZ) checking [default: disabled]
• If DNS query for SNI fails install ACLs

• No option to enable/disable IPv6 support
• If ip6tables is present IPv6 support is enabled, otherwise disabled

Lessons Learned
• I’m still experimenting with this

• Code is likely bug ridden
• It’s a race

• Sometimes Danish installs the ACLs in time, sometimes not
• Much better chance at winning the race in a middlebox than a host

• We usually think of HTTPS as being something for web browsers
• Many HTTPS sessions are not initiated by web browsers
• HTTPS is the new TCP

• TLSA RRs for HTTPS exist in the wild J
• pcap-filter(7) for IPv6 still not at feature parity with IPv4 L

• Berkeley Packet Filter (BPF) support for IPv6 is still primitive compared to IPv4
• Requires more work in user space to support IPv6 (therefore slower)

Future Work / Crazy Ideas
• Danish
• More testing and bug fixing
• More work on cross compilation to different targets

• Currently only testing on amd64
• Add syslog support
• Add support for other protocols

• IMAP, POP3, client SMTP, DNS over TLS

• Add HTTPS DANE validation support to popular scripting languages
• Perl, php, Ruby, Python, JS, libcurl, etc

• Survey HTTPS TLSA RRs in the wild

Thank You!

And please send me bug reports.
github.com/smutt/danish-rust
www.middlebox-dane.org/

