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Our research on DNS over the last years

Our rearch on DNS security/stability:

• Anycast and DDoS: IMC 2016 [2]

• Resolvers: IMC 2017 [5]

• Anycast Engineering: IMC 2017 [1]

• Caching and DDoS: IMC 2018 [4]

• Caching and TTL, and performance: IMC 2019 [3]
• (this paper)
• IMC will be next week in Amsterdam
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• TTL controls caching

• auth servers SIGNAL to resolvers how long (TTL)
• Caching is VERY important for performance

• improves user experience
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And you must set TTLs

• Say you register cachetest.net
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What TTL values are good?

Today it is unclear what an operator
should do

• DNS OPs folks on TTLs: “if it ain’t
broke don’t fix it”

We think we can help

Figure 1: DNS ops chaging
TTLs. src: trainworld.be
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Our contribution

Because of conflicting and under-explained TTL advice, we show:

1. the effective TTL comes from multiple places
• Parent and Child authoritative servers
• NS and A records (sometimes)

2. TTLs are unnecesssarily short
• a. because sometimes multiple places→ one is shorter and

wins
• or operators don’t realize the cost

3. We show that longer TTLs are MUCH faster

4. Our results were adopted by 3 ccTLD for ∼20ms median
latency improvement; 171ms 75%ile
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The rest of this talk

1. Parent vs Child: who really sets the TTL?

2. NS and A records: are they limited? And bailiwick?

3. Real-world variation exists

4. Longer TTLs are MUCH better

5. Our recommendations
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Parent vs Child



Duplicate info: which one is chosen?

• Parent and child TTLs may vary: dig NS cachetest.net

ROOT

.

.org

cachetest.net

.nl ... .net NS cachetest.net:
  * ns1.cachetest.net
  * TTL: 172800s    

NS cachetest.net:
 * ns1.cachetest.net
 * TTL: 3600s    

Which TTL will Rembrandt use? 
Parent ( 172800s) or child ( TTL: 3600s) 

Resolver
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Are resolvers parent- or child-centric?

Parent vs Child experiment

• Test with experiment on .uy: (2019-02-14)
• Parent : NS/A TTL: 172800s
• Child: NS TTL: 300s ; A: 120s

• We query with 15k VPs (Ripe Atlas) mutliple times, every
10min

• We analyze TTL values received at VPs

8
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Most Atlas VPs resolvers are child-centric

Figure 2: Observed TTLs from Atlas VPs for .uy-NS and a.nic.uy-A
queries.
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Is centricity true for TLDs and SLDs?

• Test with .nl TLD A records (ns*.dns.nl)
• TTLs are 3600s (child) vs. 17800s (parent)

Figure 3: Minimum interarrival time of A queries for TLD
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We confirmed this with a second-level domain ( paper)
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Most resolvers wil use child TTLs

• Rembrant (and users) mostly use child TTLs
• Child TTL controls caching (most times)

ROOT

.

.org

cachetest.net

.nl ... .net NS cachetest.net:
  * ns1.cachetest.net
  * TTL: 172800s    

NS cachetest.net:
 * ns1.cachetest.net
 * TTL: 3600s    

Which TTL will Rembrandt use? 
Parent ( 172800s) or child ( TTL: 3600s) 

Resolver
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Zone configurations and Effective
TTL



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12
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Are there dependencies between A and NS TTLs?

src:
https://en.wikipedia.org/wiki/Marcus_Aurelius

CC BY-SA 3.0

• Marcus Aurelius will
notice“early” refreshed A for
in-zone (in bailiwick)

• The way you configure your
zone impacts caching , not
only TTLs
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TTLs Use in the Wild



How are TTLs used in the wild?

• There is no consensus how to choose TTLs

• But folks have to choose them anyway

• We use 5 lists:
• Alexa
• Majestic
• Umbrella
• .nl
• Root (TLDs)

• We probe several records types

• We analyze child TTL values

• And discuss results with some operators

15

.nl


Most domains are out-of-bailiwick

Alexa Majestic Umbre. .nl Root
responsive 988654 928299 783343 5454833 1535

CNAME 50981 7017 452711 9436 0
SOA 12741 8352 59083 12268 0
responsive NS 924932 912930 271549 5433129 1535

Out only 878402 873447 244656 5417599 748
ratio out only 95.0% 95.7% 90.1 99.7% 48.7%

In only 37552 28577 20070 12586 654
Mixed 8978 10906 6823 2941 133

• Out of bailiwick (out-of-zone): records are cached
independently (no glues)

• Your chosen TTLs values for different records will be
respected

16



NS records have longer TTLs (>24h)
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performance)
• But 40% are one hour or less (not so good)
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A records TTLs far shorter than NS
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Operators Notification: 3 changed their TTLs

• We found 34 TLDs with short TTL for NSes (<=30min)

• We notified 8 ccTLDs

• 3 TLDs increased their TTL to 1 day after our notification
• .uy, and
• another in Africa
• and another in the Middle-East

19

.uy


.uy latency reduced a lot!

• .uy NS TTL from 300s to 86400s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

C
D

F

RTT (ms)

TTL 300s

TTL 86400s

Figure 4: RTT from RIPE Atlas VPs for NS .uy queries (NS)
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.uy latency reduced a lot!

• .uy NS TTL from 300s to 86400s: lower latency for clients
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.uy latency reduced for all regions

Check for Atlas location bias
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Longer TTL→ longer caching→ faster answers
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We are no Luiz Suárez... but

• We still helped Uruguayan .uy users

• And two other countries:
• One in East Africa
• Another one in the Middle East

• Experiment proving how TTLs are
important for performance

src: https://commons.wikimedia.org/wiki/File:
Luis_Su%C3%A1rez_2018.jpg CC BY-SA 3.0
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Longer TTLs are like the old Turbo button

• Some DNS OPs spend
1000s too reduce latency

• Longer TTLs improve
latency at zero cost

src: wikipedia.org
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Caching (Longer TTL) vs Anycast



Caching vs Anycast

• People and CDNs spend lots on huge anycast deployments

• OPs could say: “I’ll have short TTL since I use anycast”,
because anycast can make it up for it.

• Does anycast really beats caching?

26



Caching vs Anycast: experiment

Probes + Resolver

FRA

Unicast (EC2)
TTL86400 (good caching)

Anycast (Route53)
TTL60s (no caching)

Which one is faster?
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TTLs (caching) matter more than anycast
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• Caching near client beats even great server infrastructure!
• Anycast TTL60 (no cache): 29.96ms (median)
• Unicast TTL86400 (cache): 7.38ms (median):
• 22ms median latency reduction

• Query load: 77% down with caching
• so TTLs matter more for performance

• (anycast is great to many things too, DDoS for example [2])
• We strongly recommend anycast [5] 28
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Reasons for Longer or shorter TTLs

• Longer caching:
• faster responses
• lower DNS traffic
• more robust to DDoS attack [4]

• Shorter caching:
• faster operational changes
• useful for DNS redirect based DDoS
• DNS-load balance

Organizations must weight these trade-offs to find a good balance
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Recommendation and Conclusions



Conclusions

• Recommendation: longer TTLs (1 day) if you can
• unless using CDN load-balancing or DNS-redir DDoS

• Why? Because it can save you more than 50ms or more
• But keep on using anycast too [2, 5]

• People have designed caches; use them wisely

• Should you reconsider your TTLs as well?

• Paper: https://www.isi.edu/
~johnh/PAPERS/Moura19b.html

• IETF draft:
draft-moura-dnsop-
authoritative-recommendations
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