
Cache Me If You Can:
Effects of DNS Time-to-Live

Giovane C. M. Moura1,2, John Heidemann3,
Wes Hardaker3, Ricardo de O. Schmidt4

RIPE 79
Rotterdam, The Netherlands
2019-10-15

1SIDN Labs, 2TU Delft, 3USC/ISI, 4UPF



Outline

Introduction

Parent vs Child

Zone configurations and Effective TTL

TTLs Use in the Wild

Operators Notification

Caching (Longer TTL) vs Anycast

Shorter vs Longer TTLs

Recommendation and Conclusions



Our research on DNS over the last years

Our rearch on DNS security/stability:

• Anycast and DDoS: IMC 2016 [2]

• Resolvers: IMC 2017 [5]

• Anycast Engineering: IMC 2017 [1]

• Caching and DDoS: IMC 2018 [4]

• Caching and TTL, and performance: IMC 2019 [3]
• (this paper)
• IMC will be next week in Amsterdam

1



Introduction



The role of TTL

authoritative
serverresolveruser

1



The role of TTL

Q: google.com?

authoritative
serverresolveruser

1



The role of TTL

authoritative
serverresolveruser

Q: google.com? Q: google.com?

1



The role of TTL

authoritative
serverresolveruser

Q: google.com? Q: google.com?

A: 10.10.10.10 A: 10.10.10.10

1



The role of TTL

A: 10.10.10.10

authoritative
serverresolveruser

Q: google.com?Q: google.com?

A: 10.10.10.10

cache

1



The role of TTL

A: 10.10.10.10

authoritative
serverresolveruser

Q: google.com?Q: google.com?

A: 10.10.10.10

cache

Q: g
oo

gl
e.

co
m

?

1



The role of TTL

A: 10.10.10.10

authoritative
serverresolveruser

Q: google.com?Q: google.com?

A: 10.10.10.10

cache

Q: g
oo

gl
e.

co
m

?

A:
 1

0.
10

.1
0.

10

x
cache hit!
FASTER

1



The role of TTL

ISP                             GOOGLE

BUT caching FOR
HOW LONG???

A: 10.10.10.10

authoritative
serverresolveruser

Q: google.com?Q: google.com?

A: 10.10.10.10

cache

Q: g
oo

gl
e.

co
m

?

A:
 1

0.
10

.1
0.

10

cache hit!
FASTER

x
1



The role of TTL

TTL

ISP                             GOOGLE

BUT caching FOR
HOW LONG???

A: 10.10.10.10

authoritative
serverresolveruser

Q: google.com?Q: google.com?

A: 10.10.10.10

cache

Q: g
oo

gl
e.

co
m

?

A:
 1

0.
10

.1
0.

10

cache hit!
FASTER

x
1



The role of TTL

TTL

ISP                             GOOGLE

BUT caching FOR
HOW LONG???

A: 10.10.10.10

authoritative
serverresolveruser

Q: google.com?Q: google.com?

A: 10.10.10.10

cache

Q: g
oo

gl
e.

co
m

?

A:
 1

0.
10

.1
0.

10

cache hit!
FASTER

x
• TTL controls caching

• auth servers SIGNAL to resolvers how long (TTL)
• Caching is VERY important for performance

• improves user experience
2



And you must set TTLs

• Say you register cachetest.net

3



What TTL values are good?

Today it is unclear what an operator
should do

• DNS OPs folks on TTLs: “if it ain’t
broke don’t fix it”

We think we can help

Figure 1: DNS ops chaging
TTLs. src: trainworld.be

4

trainworld.be


Our contribution

Because of conflicting and under-explained TTL advice, we show:

1. the effective TTL comes from multiple places
• Parent and Child authoritative servers
• NS and A records (sometimes)

2. TTLs are unnecesssarily short
• a. because sometimes multiple places→ one is shorter and

wins
• or operators don’t realize the cost

3. We show that longer TTLs are MUCH faster

4. Our results were adopted by 3 ccTLD for ∼20ms median
latency improvement; 171ms 75%ile

5



The rest of this talk

1. Parent vs Child: who really sets the TTL?

2. NS and A records: are they limited? And bailiwick?

3. Real-world variation exists

4. Longer TTLs are MUCH better

5. Our recommendations

6



Parent vs Child



Duplicate info: which one is chosen?

• Parent and child TTLs may vary: dig NS cachetest.net

ROOT

.

.org

cachetest.net

.nl ... .net NS cachetest.net:
  * ns1.cachetest.net
  * TTL: 172800s    

NS cachetest.net:
 * ns1.cachetest.net
 * TTL: 3600s    

Which TTL will Rembrandt use? 
Parent ( 172800s) or child ( TTL: 3600s) 

Resolver

7



Are resolvers parent- or child-centric?

Parent vs Child experiment

• Test with experiment on .uy: (2019-02-14)
• Parent : NS/A TTL: 172800s
• Child: NS TTL: 300s ; A: 120s

• We query with 15k VPs (Ripe Atlas) mutliple times, every
10min

• We analyze TTL values received at VPs

8

.uy


Most Atlas VPs resolvers are child-centric

Figure 2: Observed TTLs from Atlas VPs for .uy-NS and a.nic.uy-A
queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  50  120  300  1000

C
D

F
 T

T
L
 A

n
s
w

e
rs

Answers TTL(s)

NS queries
A queries

Spike at Child TTL A (120s) : most resolvers are child centric

Spike at Child TTL NS (300s): child centric

• Remember: TTL parents: 2 days
9



Most Atlas VPs resolvers are child-centric

Figure 2: Observed TTLs from Atlas VPs for .uy-NS and a.nic.uy-A
queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  50  120  300  1000

C
D

F
 T

T
L
 A

n
s
w

e
rs

Answers TTL(s)

NS queries
A queries

Spike at Child TTL A (120s) : most resolvers are child centric

Spike at Child TTL NS (300s): child centric

• Remember: TTL parents: 2 days
9



Most Atlas VPs resolvers are child-centric

Figure 2: Observed TTLs from Atlas VPs for .uy-NS and a.nic.uy-A
queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  50  120  300  1000

C
D

F
 T

T
L
 A

n
s
w

e
rs

Answers TTL(s)

NS queries
A queries

Spike at Child TTL A (120s) : most resolvers are child centric

Spike at Child TTL NS (300s): child centric

• Remember: TTL parents: 2 days
9



Is centricity true for TLDs and SLDs?

• Test with .nl TLD A records (ns*.dns.nl)
• TTLs are 3600s (child) vs. 17800s (parent)

Figure 3: Minimum interarrival time of A queries for TLD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  5  10  20  50

C
D

F

Interarrival time (h)

T
T

L
 3

6
0
0
s

T
T

L
 1

7
3
8
0
0
s

Spike at Child TTL A (3600s): confirm child centric for TLD

We confirmed this with a second-level domain ( paper)

10

.nl


Is centricity true for TLDs and SLDs?

• Test with .nl TLD A records (ns*.dns.nl)
• TTLs are 3600s (child) vs. 17800s (parent)

Figure 3: Minimum interarrival time of A queries for TLD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  5  10  20  50

C
D

F

Interarrival time (h)

T
T

L
 3

6
0
0
s

T
T

L
 1

7
3
8
0
0
s

Spike at Child TTL A (3600s): confirm child centric for TLD

We confirmed this with a second-level domain ( paper)

10

.nl


Is centricity true for TLDs and SLDs?

• Test with .nl TLD A records (ns*.dns.nl)
• TTLs are 3600s (child) vs. 17800s (parent)

Figure 3: Minimum interarrival time of A queries for TLD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  5  10  20  50

C
D

F

Interarrival time (h)

T
T

L
 3

6
0
0
s

T
T

L
 1

7
3
8
0
0
s

Spike at Child TTL A (3600s): confirm child centric for TLD

We confirmed this with a second-level domain ( paper)

10

.nl


Most resolvers wil use child TTLs

• Rembrant (and users) mostly use child TTLs
• Child TTL controls caching (most times)

ROOT

.

.org

cachetest.net

.nl ... .net NS cachetest.net:
  * ns1.cachetest.net
  * TTL: 172800s    

NS cachetest.net:
 * ns1.cachetest.net
 * TTL: 3600s    

Which TTL will Rembrandt use? 
Parent ( 172800s) or child ( TTL: 3600s) 

Resolver

11



Outline

Introduction

Parent vs Child

Zone configurations and Effective TTL

TTLs Use in the Wild

Operators Notification

Caching (Longer TTL) vs Anycast

Shorter vs Longer TTLs

Recommendation and Conclusions



Zone configurations and Effective
TTL



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are there dependencies between A and NS TTLs?

sub.cachetest.net

In zone Out of zone

NS: ns1.sub.cachetest.net NS: ns1.zurrundeddu.com

A :10.10.10.10 A :10.10.10.107200

3600

7200

3600

To resolve *.sub.cachetest.net, you need both NS and A
Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)
2. t=4800: what happens ? NS is expired; A is still in cache:
do resolvers use the “cached A” or refresh it again?

trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

Will Marcus Aurelius receive cached or new answer? 12



Are they dependent? Yes, for in zone

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Cache warms NS Expires, A Valid (3600< t <7200)

in zone: A refreshed (new server): dependent caching?
out-of- zone: cached A (old server): independent caching?

Why? Glues cause cache refresh

13



Are they dependent? Yes, for in zone

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Cache warms NS Expires, A Valid (3600< t <7200)

in zone: A refreshed (new server): dependent caching?
out-of- zone: cached A (old server): independent caching?

Why? Glues cause cache refresh

13



Are they dependent? Yes, for in zone

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Cache warms NS Expires, A Valid (3600< t <7200)

in zone: A refreshed (new server): dependent caching?
out-of- zone: cached A (old server): independent caching?

Why? Glues cause cache refresh

13



Are they dependent? Yes, for in zone

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Cache warms NS Expires, A Valid (3600< t <7200)

in zone: A refreshed (new server): dependent caching?
out-of- zone: cached A (old server): independent caching?

Why? Glues cause cache refresh

13



Are they dependent? Yes, for in zone

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Cache warms NS Expires, A Valid (3600< t <7200)

in zone: A refreshed (new server): dependent caching?
out-of- zone: cached A (old server): independent caching?

Why? Glues cause cache refresh

13



Are they dependent? Yes, for in zone

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Cache warms NS Expires, A Valid (3600< t <7200)

in zone: A refreshed (new server): dependent caching?
out-of- zone: cached A (old server): independent caching?

Why? Glues cause cache refresh

13



Are they dependent? Yes, for in zone

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired. 
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Cache warms NS Expires, A Valid (3600< t <7200)

in zone: A refreshed (new server): dependent caching?
out-of- zone: cached A (old server): independent caching?

Why? Glues cause cache refresh

13



Are there dependencies between A and NS TTLs?

src:
https://en.wikipedia.org/wiki/Marcus_Aurelius

CC BY-SA 3.0

• Marcus Aurelius will
notice“early” refreshed A for
in-zone (in bailiwick)

• The way you configure your
zone impacts caching , not
only TTLs

14

https://en.wikipedia.org/wiki/Marcus_Aurelius


Outline

Introduction

Parent vs Child

Zone configurations and Effective TTL

TTLs Use in the Wild

Operators Notification

Caching (Longer TTL) vs Anycast

Shorter vs Longer TTLs

Recommendation and Conclusions



TTLs Use in the Wild



How are TTLs used in the wild?

• There is no consensus how to choose TTLs

• But folks have to choose them anyway

• We use 5 lists:
• Alexa
• Majestic
• Umbrella
• .nl
• Root (TLDs)

• We probe several records types

• We analyze child TTL values

• And discuss results with some operators

15

.nl


Most domains are out-of-bailiwick

Alexa Majestic Umbre. .nl Root
responsive 988654 928299 783343 5454833 1535

CNAME 50981 7017 452711 9436 0
SOA 12741 8352 59083 12268 0
responsive NS 924932 912930 271549 5433129 1535

Out only 878402 873447 244656 5417599 748
ratio out only 95.0% 95.7% 90.1 99.7% 48.7%

In only 37552 28577 20070 12586 654
Mixed 8978 10906 6823 2941 133

• Out of bailiwick (out-of-zone): records are cached
independently (no glues)

• Your chosen TTLs values for different records will be
respected

16



NS records have longer TTLs (>24h)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

Spike at 24h

• > 60% NS records are long ( Good for caching and
performance)
• But 40% are one hour or less (not so good)

17



NS records have longer TTLs (>24h)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

Spike at 24h

• > 60% NS records are long ( Good for caching and
performance)
• But 40% are one hour or less (not so good)

17



A records TTLs far shorter than NS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

Shorter A records TTLs leads to poor caching

18



A records TTLs far shorter than NS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

Shorter A records TTLs leads to poor caching

18



A records TTLs far shorter than NS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  24 48  256  2048

C
D

F

answers TTL (h)

Alexa

Majestic

Umbrella

.nl

root

Shorter A records TTLs leads to poor caching

18



Operators Notification: 3 changed their TTLs

• We found 34 TLDs with short TTL for NSes (<=30min)

• We notified 8 ccTLDs

• 3 TLDs increased their TTL to 1 day after our notification
• .uy, and
• another in Africa
• and another in the Middle-East

19

.uy


.uy latency reduced a lot!

• .uy NS TTL from 300s to 86400s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

C
D

F

RTT (ms)

TTL 300s

TTL 86400s

Figure 4: RTT from RIPE Atlas VPs for NS .uy queries (NS)

20

.uy


.uy latency reduced a lot!

• .uy NS TTL from 300s to 86400s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

C
D

F

RTT (ms)

TTL 300s

TTL 86400s

Figure 4: RTT from RIPE Atlas VPs for NS .uy queries (NS)

20

.uy


.uy latency reduced a lot!

• .uy NS TTL from 300s to 86400s: lower latency for clients

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

Median RTT: from 28 to 8ms

75%ile: from 173 to 21ms

C
D

F

RTT (ms)

TTL 300s

TTL 86400s

Figure 5: RTT from RIPE Atlas VPs for NS .uy queries (NS)

Median RTT improves by 20ms; 75%ile by 152ms 21

.uy


.uy latency reduced for all regions

Check for Atlas location bias

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

AF
(327)

AS
(846)

EU
(9691)

NA
(2307)

OC
(267)

SA
(293)

ALL
(13731)

R
T

T
 (

m
s
)

continent code (# of VPs)

TTL 300s

TTL 86400s

Figure 6: Median RTT as seen by RIPE Atlas VPs per region

Longer TTL→ longer caching→ faster answers

22



.uy latency reduced for all regions

Check for Atlas location bias

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

AF
(327)

AS
(846)

EU
(9691)

NA
(2307)

OC
(267)

SA
(293)

ALL
(13731)

R
T

T
 (

m
s
)

continent code (# of VPs)

TTL 300s

TTL 86400s

Figure 7: Median RTT as seen by RIPE Atlas VPs per region

Longer TTL→ longer caching→ faster answers

Up to 150ms median latency reduction (AF) 23



We are no Luiz Suárez... but

• We still helped Uruguayan .uy users

• And two other countries:
• One in East Africa
• Another one in the Middle East

• Experiment proving how TTLs are
important for performance

src: https://commons.wikimedia.org/wiki/File:
Luis_Su%C3%A1rez_2018.jpg CC BY-SA 3.0

24

.uy
https://commons.wikimedia.org/wiki/File:Luis_Su%C3%A1rez_2018.jpg
https://commons.wikimedia.org/wiki/File:Luis_Su%C3%A1rez_2018.jpg


Longer TTLs are like the old Turbo button

• Some DNS OPs spend
1000s too reduce latency

• Longer TTLs improve
latency at zero cost

src: wikipedia.org

25

wikipedia.org


Outline

Introduction

Parent vs Child

Zone configurations and Effective TTL

TTLs Use in the Wild

Operators Notification

Caching (Longer TTL) vs Anycast

Shorter vs Longer TTLs

Recommendation and Conclusions



Caching (Longer TTL) vs Anycast



Caching vs Anycast

• People and CDNs spend lots on huge anycast deployments

• OPs could say: “I’ll have short TTL since I use anycast”,
because anycast can make it up for it.

• Does anycast really beats caching?

26



Caching vs Anycast: experiment

Probes + Resolver

FRA

Unicast (EC2)
TTL86400 (good caching)

Anycast (Route53)
TTL60s (no caching)

Which one is faster?

27



Caching vs Anycast: experiment

Probes + Resolver

FRA

Unicast (EC2)
TTL86400 (good caching)

Anycast (Route53)
TTL60s (no caching)

Which one is faster?

27



Caching vs Anycast: experiment

Probes + Resolver

FRA

Unicast (EC2)
TTL86400 (good caching)

Anycast (Route53)
TTL60s (no caching)

Which one is faster?

27



Caching vs Anycast: experiment

Probes + Resolver

FRA

Unicast (EC2)
TTL86400 (good caching)

Anycast (Route53)
TTL60s (no caching)

Which one is faster?

27



Caching vs Anycast: experiment

Probes + Resolver

FRA

Unicast (EC2)
TTL86400 (good caching)

Anycast (Route53)
TTL60s (no caching)

Which one is faster?

27



Caching vs Anycast: experiment

Probes + Resolver

FRA

Unicast (EC2)
TTL86400 (good caching)

Anycast (Route53)
TTL60s (no caching)

Which one is faster?

27



TTLs (caching) matter more than anycast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

E
C

D
F

RTT (ms)

TTL 60s

T
T
L 

60
s 

an
yc

as
t

22ms diff unicast+cache wrt anycast-cache

• Caching near client beats even great server infrastructure!
• Anycast TTL60 (no cache): 29.96ms (median)
• Unicast TTL86400 (cache): 7.38ms (median):
• 22ms median latency reduction

• Query load: 77% down with caching
• so TTLs matter more for performance

• (anycast is great to many things too, DDoS for example [2])
• We strongly recommend anycast [5] 28



TTLs (caching) matter more than anycast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

E
C

D
F

RTT (ms)

TTL 60s

T
T
L 

60
s 

an
yc

as
t

22ms diff unicast+cache wrt anycast-cache

• Caching near client beats even great server infrastructure!
• Anycast TTL60 (no cache): 29.96ms (median)
• Unicast TTL86400 (cache): 7.38ms (median):
• 22ms median latency reduction

• Query load: 77% down with caching
• so TTLs matter more for performance

• (anycast is great to many things too, DDoS for example [2])
• We strongly recommend anycast [5] 28



TTLs (caching) matter more than anycast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

E
C

D
F

RTT (ms)

TTL 60s

T
T
L 

60
s 

an
yc

as
t

22ms diff unicast+cache wrt anycast-cache

• Caching near client beats even great server infrastructure!
• Anycast TTL60 (no cache): 29.96ms (median)
• Unicast TTL86400 (cache): 7.38ms (median):
• 22ms median latency reduction

• Query load: 77% down with caching
• so TTLs matter more for performance

• (anycast is great to many things too, DDoS for example [2])
• We strongly recommend anycast [5] 28



TTLs (caching) matter more than anycast

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  5  10  50  500  5000

E
C

D
F

RTT (ms)

TTL 60s

T
T
L 

60
s 

an
yc

as
t

22ms diff unicast+cache wrt anycast-cache

• Caching near client beats even great server infrastructure!
• Anycast TTL60 (no cache): 29.96ms (median)
• Unicast TTL86400 (cache): 7.38ms (median):
• 22ms median latency reduction

• Query load: 77% down with caching
• so TTLs matter more for performance

• (anycast is great to many things too, DDoS for example [2])
• We strongly recommend anycast [5] 28



Outline

Introduction

Parent vs Child

Zone configurations and Effective TTL

TTLs Use in the Wild

Operators Notification

Caching (Longer TTL) vs Anycast

Shorter vs Longer TTLs

Recommendation and Conclusions



Reasons for Longer or shorter TTLs

• Longer caching:
• faster responses
• lower DNS traffic
• more robust to DDoS attack [4]

• Shorter caching:
• faster operational changes
• useful for DNS redirect based DDoS
• DNS-load balance

Organizations must weight these trade-offs to find a good balance

29



Recommendation and Conclusions



Conclusions

• Recommendation: longer TTLs (1 day) if you can
• unless using CDN load-balancing or DNS-redir DDoS

• Why? Because it can save you more than 50ms or more
• But keep on using anycast too [2, 5]

• People have designed caches; use them wisely

• Should you reconsider your TTLs as well?

• Paper: https://www.isi.edu/
~johnh/PAPERS/Moura19b.html

• IETF draft:
draft-moura-dnsop-
authoritative-recommendations

30

https://www.isi.edu/~johnh/PAPERS/Moura19b.html
https://www.isi.edu/~johnh/PAPERS/Moura19b.html


References i

[1] DE VRIES, W. B., DE O. SCHMIDT, R., HARAKER, W.,
HEIDEMANN, J., DE BOER, P.-T., AND PRAS, A.

Verfploeter: Broad and load-aware anycast mapping.

In Proceedings of the ACM Internet Measurement Conference
(London, UK, 2017).

[2] MOURA, G. C. M., DE O. SCHMIDT, R., HEIDEMANN, J., DE

VRIES, W. B., MÜLLER, M., WEI, L., AND HESSELMAN, C.

Anycast vs. DDoS: Evaluating the November 2015 root
DNS event.

31



References ii

In Proceedings of the ACM Internet Measurement Conference
(Santa Monica, California, USA, Nov. 2016), ACM,
pp. 255–270.

[3] MOURA, G. C. M., HEIDEMANN, J., DE O. SCHMIDT, R., AND

HARDAKER, W.

Cache me if you can: Effects of DNS Time-to-Live
(extended).

In Proceedings of the ACM Internet Measurement Conference
(Amsterdam, the Netherlands, Oct. 2019), ACM, p. to appear.

32



References iii

[4] MOURA, G. C. M., HEIDEMANN, J., MÜLLER, M.,
DE O. SCHMIDT, R., AND DAVIDS, M.

When the dike breaks: Dissecting DNS defenses during
DDoS.

In Proceedings of the ACM Internet Measurement Conference
(Boston, MA, USA, Oct. 2018), pp. 8–21.

[5] MÜLLER, M., MOURA, G. C. M., DE O. SCHMIDT, R., AND

HEIDEMANN, J.

Recursives in the wild: Engineering authoritative DNS
servers.

In Proceedings of the ACM Internet Measurement Conference
(London, UK, 2017), ACM, pp. 489–495.

33


	Introduction
	Parent vs Child
	Zone configurations and Effective TTL
	TTLs Use in the Wild
	Operators Notification 

	Caching (Longer TTL) vs Anycast
	Shorter vs Longer TTLs

	Recommendation and Conclusions

