Benchmarking DNS resolvers

using realistic workload

Petr Špaček • petr.spacek@nic.cz • 2019-10-16

Talk outline

- Motivation
- Classic approach
- Classic pitfalls
- DNS Shotgun tool for realistic benchmarking

Motivation

- Running DNS resolver ⇒ power, cooling
- Power, cooling ⇒ €€€
- Benchmarking ⇔ optimization
 - ⇒ cost reduction

Inside of a DNS resolver: Cache hit

- Query parsing
- Cache search
- Answer serialization

Inside of a DNS resolver: Cache miss

- Authoritative server selection who to ask?
- Retransmit strategy
- DNSSEC validation
- Socket management reuse? randomization?
- Policy engine
- Cache write & eviction

Classic benchmarking: QPS QPS QPS!

- \$ man resperf
- Query list: tcpdump -> text
- Ramp-up query traffic
- Find max QPS
 - Response rate drops

Classic pitfalls 1/2

- No query timing
 - Ignores TTL ⇒ unrealistic cache hit rate
- Text query list
 - EDNS info lost ⇒ unrealistic TCP fallbacks
- QPS ramp-up
 - Waits for cache hit rate increase ⇒ unrealistic
 - Resolver restart!

Classic pitfalls 2/2

- Small # of clients
 - Affects workload distribution
- No fallback to TCP
 - TrunCated bit
- No connection management
 - TCP, TLS, DoH!
- Over-focuses on QPS!

DNS Shotgun: Introduction

- New toolset
 - Based on <u>dnsjit</u> by DNS-OARC
 - https://www.dns-oarc.net/tools/dnsjit
- Realistic DNS benchmarking
- Open-source
 - https://gitlab.labs.nic.cz/knot/shotgun/

DNS Shotgun: Client-based approach

How many clients can the resolver handle?

- Performance depends on clients
 - IoT, mobile, desktop, mail server, ...

DNS Shotgun: Principle

- Phase 1: Analyze traffic patterns in PCAPs
- Phase 2: Simulate N of your clients

DNS Shotgun: Traffic analysis

- Query stream for each IP/DNS client
 - IoT mobile desktop mail server …
 - Beware! NAT!
- Pre-generate test data
 - N clients with S seconds
 - **S** = 60 seconds
 - **N** = 100k, 200k, 300k, ..., 1M

DNS Shotgun: 3 => 6 clients – generation

Time ⇒	1	2	3	4	5	6	7	8
Client 1	Q11				Q15			
Client 2	Q21	Q22	Q23	Q24	Q25			Q28
Client 3	Q31		Q33				Q37	

Time ⇒	1	2	3	4
Client 1	Q11			
Client 2	Q21	Q22	Q23	Q24
Client 3	Q31		Q33	
Client 4	Q15			
Client 5	Q25			Q28
Client 6			Q37	

DNS Shotgun: Client simulation

- Replay pre-generated traffic
- Socket/connection per query/client
- Keep ± 1 second query timing
 - Realistic cache hit rate
 - ⇒ QPS varies over time
- Want higher "QPS"? Add clients!

DNS Shotgun: Performance testing

- Simulate N clients
 - Analyze respose rate + RCODEs
 - Monitor resource usage
- Increase N
 - ... as long as resolver can keep up
- N = maximum # of clients
 - for given input PCAP & connection parameters

DNS Shotgun: Experiment

- Input: anonymized traffic from a Czech university
- Empty cache
- Measure response rate over 120 s
- Monitor NOERROR/NXDOMAIN/SERVFAIL ratios
- Increase # of clients
- 4 CPUs, no qname minimization, same cache params

PowerDNS Recursor 4.2.0: defaults

PowerDNS Recursor 4.2.0: max-mthreads?

PowerDNS Recursor 4.2.0: reuseport?

PowerDNS Recursor 4.2.0: reuseport?

BIND 9.14.6: --tuning=default

BIND 9.14.6: --tuning=?

BIND 9.14.6: --tuning=default, synth-from-dnssec?

BIND 9.14.6: --tuning=default, synth-from-dnssec?

Knot Resolver 4.2.2 defaults

Knot Resolver 4.2.2 vs. to-be-4.3.0

Knot Resolver 4.2.2 vs. to-be-4.3.0

Unbound 1.9.4

Unbound 1.9.4

DNS Shotgun: Limitations

- Requires a lot of PCAPs
 - 1 hour, 1k clients
 - = 6 minutes, 10k clients (simulated)
- Results depend on input traffic capture
 - ... simulates your own clients
- TCP/TLS/DoH not supported yet

DNS Shotgun: Try it

- Very much work-in-progress
 - Here be dragons! :-)
- Try it anyway
 - https://gitlab.labs.nic.cz/knot/shotgun
- Sponsors needed!
 - TCP/TLS/DoH support
 - Configurable connection reuse (pipelining, keepalive)

Closing remarks

- DNS micro-benchmarks do not reflect real world
- HW & OS changes invalidate results
- Generalization is hard
 - Compare using your config and your traffic
- Interested in benchmarking? Get in touch
 - petr.spacek@nic.cz
 - https://gitlab.labs.nic.cz/knot/shotgun

