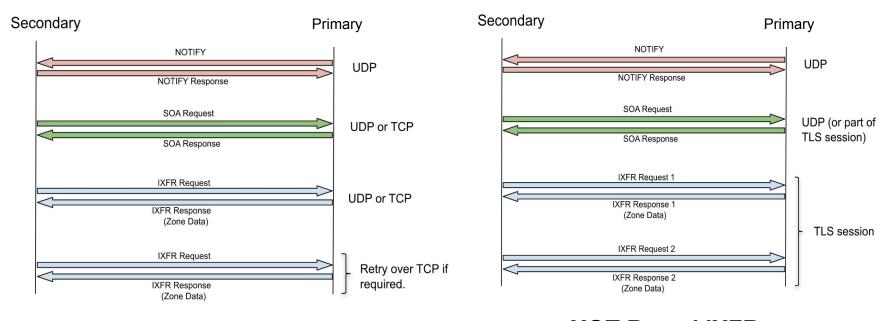
XFR-over-TLS (XoT)

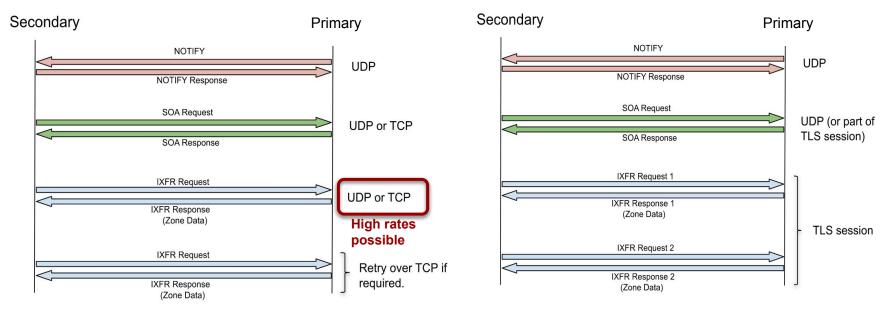
Making Zone Transfers Private

Allison Mankin amankin@gmail.com
Willem Toorop willem@nlnetlabs.nl
Sara Dickinson sara@sinodun.com
Pallavi Aras paras@salesforce.com
Han Zhang hzhang@salesforce.com


Use cases for XoT

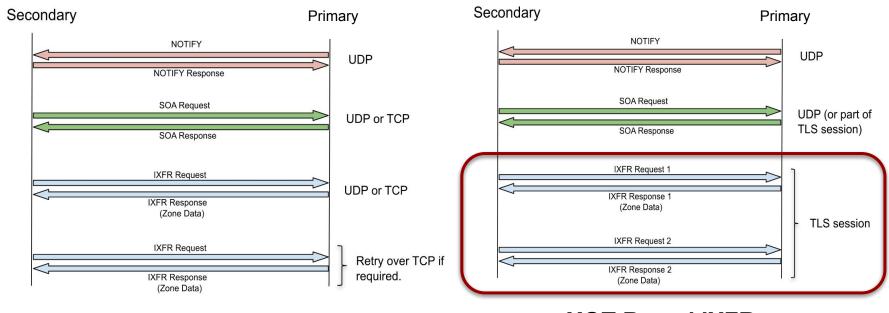
- Confidentiality: Encrypting zone transfers will defeat zone content leakage that can occur via passive surveillance
- Authentication: Use of single or mutual TLS authentication (in combination with ACLs)
 can complement and potentially be an alternative to TSIG
- Performance: Current usage of TCP for IXFR is sub-optimal in many cases
 e.g. TCP connections are frequently closed after a single IXFR for a single zone

- SOLUTION: Encryption of IXFR & AXFR using DNS-over-TLS [RFC7858]
 - o Internet-Draft: <u>draft-hzpa-dprive-xfr-over-tls</u>


IXFR: Existing mechanisms vs IXoT

Existing

XOT-Based IXFR


IXFR: Existing mechanisms vs IXoT

Existing

XOT-Based IXFR

IXFR: Existing mechanisms vs IXoT

XOT-Based IXFR

XoT - Authentication mechanisms

Method		Secondary			Primary		
		Data Auth	Channel Conf	Channel Auth	Data Auth	Channel Conf	Channel Auth
TSIG							
TLS	Орро						
	Strict						
	Mutual						
ACL on master							

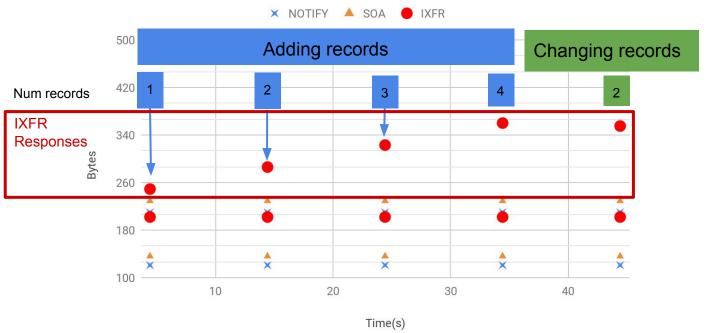
XoT - Authentication mechanisms

Method			Secondary	y	Primary		
		Data Auth	Channel Conf	Channel Auth	Data Auth	Channel Conf	Channel Auth
TSIG							
TLS	Орро						
	Strict						
	Mutual						
ACL on master							

Analysis: Using **TSIG**, **Strict TLS and an ACL** on the primary provides all 3 properties for both parties with reasonable overhead

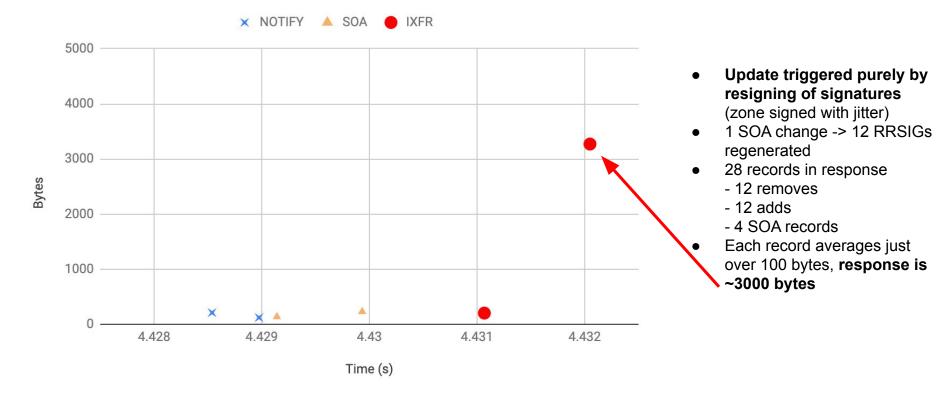
Policy Management for XoT

- 'Transfer Group' entire group of servers involved in transfers of a given zone (all primaries, all secondaries)
- The entire transfer group SHOULD have the same policy wrt (no weak point):
 - o TSIG, TLS (O, S or m), IP ACL
- CHALLENGE: How to configure, enforce and test policy implementation?
 - Often involves different operators, different software, hidden servers
 - Feedback please

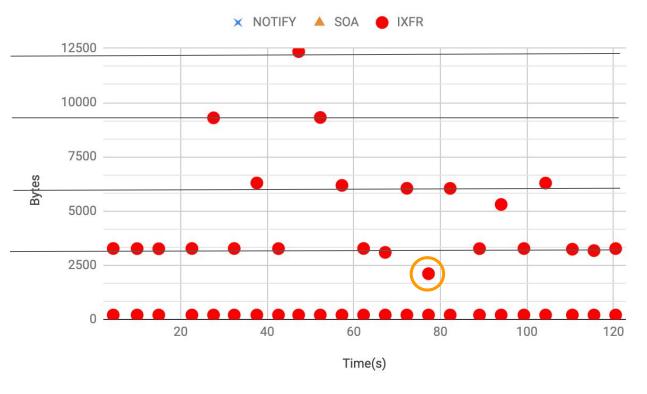

Ongoing work

- Latest implementation
 - Unbound release 1.9.2 includes secondary-side AXFR XoT
 - NOTE: Server side XoT can be deployed using a TLS proxy
- Open questions on the draft
 - SHOULD/MUST
 - SOA query be on a TLS connection?
 - 'Condensation' of changes be required (optional in IXFR)?
 - Use only TLS 1.3 or later?
 - Padding what policy?

Padding Policy

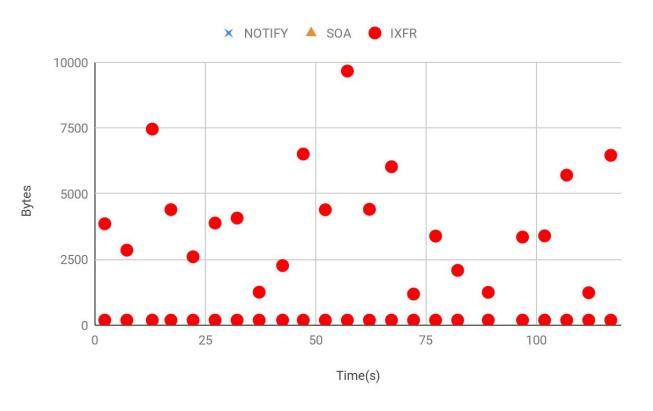

- Requirements could be context specific
- Packet sizes and timings vary depending on several factors:
 - Frequency of updates (manual reload vs steady dynamic updates vs batch dynamic)
 - 'Condensation' of changes
 - DNSSEC signed (NSEC/NSEC3)
 - Ongoing resigning of records as signatures expire (spikes or jittered)
 - Updates trigger resigning -> new RRSIGs
- Next slides show two extremes of patterns/packet sizes

Simplest IXFR pattern (unsigned zone with regular updates)



- Unsigned zone with records added every 10 seconds
- Smallest XFR response packet possible would be 5 records:
 - 1 new record
 - 4 SOAs
- Order of few hundred bytes (~250 in this case)
- Packet size can indicate record changes but adding and changing are hard to distinguish (and name compression happens)

Single IXFR exchange for large DNSSEC NSEC3 signed zone (no updates)



Multiple IXFRs for large DNSSEC NSEC3 signed zone (one update shown)

- Periodic resigning dominates
- Transfers every 5s, on a separate TCP connection
- Responses clustered around multiples of 3k bytes (1 SOA change) note no condensation of changes
- Anomaly at 77s is caused by a single record update to the zone

Multiple IXFRs - large dynamic DNSSEC NSEC3 signed zone (many updates)

- Updates to zone every few seconds
- If updates are frequent, size pattern is more complex
- But answers still dominated by RRSIG records
- Still see 5s intervals

Take aways

Padding specifics

- Unsigned zones can directly leak number of record updates even when encrypted
- Re-using a single connection for multiple zones would disguise the update pattern (as well as being a performance gain)
- DNSSEC signing with jitter disguises the actual updates, but pattern varies with zone size and signing details

Future work for XoT in general

Should some signalling be added (using EDNS0)? Useful for multiple aspects...