
Internet clouds are (also) unpredictable!
A study of flow rerouting and latency variations across
the largest Cloud network worldwide

Marco Chiesa
KTH Royal Institute of Technology

Joint work with: Waleed Reda, Kirill Bogdanov,
Alexandros Milolidakis, Gerald Q Maguire Jr, Dejan Kostic

Thanks to the RACI initiative!



Let’s open a TCP connection between
Oregon and Virginia

2
* map of USA taken from Bing Maps



Stable Round Trip Time latency of roughly 80ms

Source port:

3

5327



We open a second connection:
Up to 10% better latency!

Source port:

4

5327 8467

~10%



We open a third connection:
Unstable and worse latency!

Source port:

5

5327 8467 9375



Insight #1: Flows experiences path changes at a 
second-level time scales

Source port:

6

5327 8467 9375

31s

6s

stable



Insight #2: 
Flows experience unfair performance

Source port:

7

5327 8467 9375

33%



Why do we see so many different latency behaviours?

8



Periodic TE re-optimization in cloud networks:
• 2011: MPLS autobandwidth in Microsoft WAN*
• today: (claimed) SDN-based TE at Amazon, Google, Microsoft

Two-phase TE:
• compute (multiple) tunnels among region pairs
• compute traffic splitting ratios among tunnels

• typically hash-based implementation -> flow consistency
• risk of reshuffling flow packets upon splitting ratio update!

Traffic Engineering (TE) :
balance flows of traffic in a network

9
* A. Pathak et al ”Latency Inflation with MPLS-based Traffic Engineering” IMC 2011



10

!𝟏 𝟔

!𝟏 𝟑

!𝟏 𝟐 index nexthop
0 A

1 B

2 B

3 C

4 C

5 C

TCP connection flow

IP src, VIP

TCP src, dst

payload

Hash % 6

Stateless hash-based traffic splitting: packets 
belonging to the same connection may be rerouted 
when traffic splitting ratios are modified

path A

path B

path C



11

!𝟏 𝟔

!𝟏 𝟑

!𝟏 𝟐

TCP connection flow

IP src, VIP

TCP src, dst

payload

Hash % 6

Stateless hash-based traffic splitting: packets 
belonging to the same connection may be rerouted 
when traffic splitting ratios are modified

path A

path B

path C

index nexthop
0 A

1 B

2 B

3 C à B

4 C

5 C

!𝟏 𝟐

!𝟏 𝟑



Extract base propagation latency
• filter congestion
• we rely on variations of a 

rolling-minimum mechanism

Let’s open a new connection and dissect it:
latency = base propagation latency + congestion

12



Rolling-minimum sliding window:
• stable if 3 out of 4 samples are within 0.5ms
• update base propagation latency only if stable AND >0.5ms change

The technical yet necessary part (bear with me):
Extracting base propagation latency

13

8.00
7.95
7.90

8.2 9.8 6.88.38.27.9

Transient spike ≥ 0.5 ms
(unstable)

Sliding window
(running minimum)

1-sec bin latency

Base propagation

wn+1wn wn+2

N/A N/AN/A 7.9

7

wn+4

7.9

Ignore output from unstable windows wn+2 and wn+3
Replace missing output with last valid propagation delay

Small variation < 0.5 ms
(stable)

1 sec

7.1

7.9 7.9 6.8

wn+3

la
te

nc
y 

(m
s)

time (s)



Extract base propagation latency
• filter congestion
• we rely on variations of a 

rolling-minimum mechanism
The interesting part:

Are these really path changes?

The technical part:
Extracting base propagation latency

14

The filtered base propagation latency



Key intuition: a path change from a high to a low latency
path causes packet reordering

1
2
34

4321

15



We correlate packet reordering
events with propagation latency:

• zero false positives, i.e., a 
latency decrease >0.5ms is a 
path change

• limited false negatives, i.e., 
path changes within 0.5ms 
-> conservative approach

• henceforth, latency means base
propagation latency

The path change detector is accurate
and conservative

16

Step Change >0.5msFiltered Latency



We can now detect path changes
We set up an extensive measurement study of AWS

17Picture credits: AWS re:Invent 2016: Tuesday Night Live with James Hamilton



Some AWS regions have high latency variations 
across different flows (i.e., different source ports)

18

We looked at all the 120 region 
pairs in AWS:
• Latency inflation:

max-latency/min-latency
• >32% latency inflation for 5% 

of region pairs

We zoomed into four AWS region 
pairs for the micro-scale
experiments
• neither the worst nor the best 

pairs

Fr
ac

tio
n

of
re

gi
on

 p
ai

rs

Sydney,
Tokyo

Sao Paulo,
Montreal

Singapore,
Paris

Oregon,
Virginia

%



The flow-latency spectrum over time for four
different pairs of regions

19

Sydney - Tokyo

Oregon - Virginia

Singapore - Paris

Sao Paulo - Montreal paths (dis)appear!!!stable distribution 
but…

The median case much worse
than the best case

5’th perc
25’th perc
50’th perc
75’th perc
95’th perc



Stable distribution but… are the flows routed
always on the same path? Not necessarily!

20

Consider all events when a flow changes
path:
• 40% of the cases, the flow moves

away within 10 seconds

Flow persistence (s)

Fr
ac

tio
n

of
flo

w
pa

th
ch

an
ge

ev
en

ts



Flows routes on low-latency paths are more likely
to experience a path change

21

We counted the number of flows moved away from a path per 
flow latency class (Oregon-Virginia):
• number of moved flows is inversely proportional to flow latency
• likely constrained shortest-path-based TE



Measuring the level of ”unfairness” among flows

22

We measure the flow latency of each flow in 20-sec interval bins
• we plot the 50’th, 95’th, 99’th latency percentiles
• bimodal behaviour at 50’th
• 12% difference for all percentiles

12% 

Fr
ac

tio
n

of
TC

P 
co

nn
ec

tio
ns



Measuring instabilities during ”low” or ”high” season

23

Large cloud networks tune the “aggressiveness” of their TE 
mechanisms according to the users’ load
We performed again the same measurements during “low” 
season, expecting to see less path changes

33%

Fr
ac

tio
n

of
flo

w
pa

th
ch

an
ge

ev
en

ts

is this network
update churn?



Moving 1K of data can take 18% more time when 
the flow is mapped to a high latency path

24

Fr
ac

tio
n

of
ip

er
fc

on
ne

ct
io

ns

We generated a large number of iperf tests from Oregon (US 
west coast) to Virginia (US east coast) 
We moved 1K of data in each iperf test
We did not observe any packet retransmission

18%



Conclusions and takeaway

25

We measured the largest worldwide cloud backbone network (AWS):
• Insight #1: very reactive TE, especially across some regions
• Insight #2: flows experience unfair treatment

• both in Round Trip Time and in the number of path changes

Far-reaching implications on the cloud ßà tenants interaction:
• congestion control: TCP Cubic suffers from packet reordering
• latency: low-latency geo-distributed emerging applications

require low and deterministic latencies
• selfish-routing: application developers can force multiplexing of

traffic on shortest paths, ultimately defeating cloud TE operation
Thank you!

Marco Chiesa < mchiesa@kth.se >
KTH Royal Institute of Technology



Selfish routing: giving control to the cloud tenants 
may lead to an unhealthy situation

26

10ms - low 
latency path

100ms - high 
latency path

A B

100ms

10ms

user 1
user 2
user 3

!𝟐 𝟑

!𝟏 𝟑



Selfish routing: giving control to the cloud tenants 
may lead to an unhealthy situation

27

10ms - low 
latency path

100ms - high 
latency path

A B

100ms

10ms

user 1
user 2
user 3

!𝟐 𝟑

!𝟏 𝟑



Flow path change interarrival time

30



Flow persistence – forward path

31



Flow persistence –reverse path

32



Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

33



Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

34



Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

35



Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

36



Stable distribution but… are the flows routed
always on the same path? Not necessarily!

44

Flow persistence (s)

Fr
ac

tio
n

of
flo

w
pa

th
ch

an
ge

ev
en

ts

Consider all events when a flow changes
path:
• 40% of the cases, the flow moves

away within 10 seconds

Fr
ac

tio
n

of
20

-s
ec

 ti
m

e
in

te
rv

al
bi

ns
 

We count #path-changes each 20 seconds
• Sidney-Tokyo: during 1% of the time, 

we observe all the path changes
• Virginia-Oregon: during 85% of the 

time, at least some flows change path



This talk in a nutshell

45

We measured the largest worldwide cloud backbone network (AWS):
• Insight #1: very reactive TE performed across datacenters
• Insight #2: tenants’ flows experience unfair treatment

• both in Round Trip Times and number of path changes

Far-reaching implications on how clouds and tenants interact:
• congestion control: TCP Cubic suffers from packet reordering
• latency: low-latency geo-distributed emerging applications

require low and deterministic latencies
• selfish-routing: application developers can force multiplexing of

traffic on low-latency paths, ultimately hindering cloud TE operation


