Internet clouds are (also) unpredictable!

A study of flow rerouting and latency variations across
the largest Cloud network worldwide

Marco Chiesa
KTH Royal Institute of Technology

Joint work with: Waleed Reda, Kirill Bogdanov,
Alexandros Milolidakis, Gerald Q Maguire Jr, Dejan Kostic

Thanks to the RACI initiative!

Let’s open a TCP connection between
Oregon and Virginia

NORTH DAXOTA

———

MINNESOTA

Ottowe Moreve
’ . . 4
: SOUTH DAKOTA WISCONSIN -
-
paac . .S-u- [’ Toromte i |
i 4 WYOMING MICHIGAN
WA NEW YORS] v
-

o “ /
Chayeene NEBRASKA - . s /

, PENNSYLVANA .

St Lake oy Ledoany
a NEVADA Dt ’ W-. N v
A T 3 - w4
\ priaN .lcpa‘ INDANA \
" DU AWARL
San Franoss COLORADO KANSAS
. - MISSOUR » .
KENTUCKY VIRGNWA
Las Vegas Vepine Sasch
CALFORNIA . s Fe f
c OKLAHOMA TNNESSEE Lo woRTH
Memphis/ L cAnDUNA
Los Angeles ARIZONA ARXANIAS SOUTH
- »” NEW MEXCO : Atiort =
- -
San Dego Meuncab Daas
p——— Cradad sachnen ALABAMA
\ Sobrer Sovorih
) .\ TEXAS MISSILLPP CLORGIA
O BwUA~LUA .
e % N Awstin LOUIIANA ! I
AL RSk omORA \ ' L -
San Amonio .
Hermendio = .
1 hovabee \
A \
COMRA \ FLORDA
\,
wwhtio - Mo~
g,,,,o,.. .Uomvm - g
MAVO
o Lom Gulf of Mesics o
LR Y - - TAMAI Y DAL, W AL assar

* map of USA taken from Bing Maps

Stable Round Trip Time latency of roughly 80ms

Source port: 2327

-
o
—

90

Latency (ms)
|

80

I I
0) 50 100 150
Timestamp (s)

We open a second connection:
Up to 10% better latency!

Source port: 9327 8467
o
—~~ =
w b
&
~ O _|
> O
&)
&
= Q- : ————
5@ - $1o% r
| | !
0 50 100 150

Timestamp (s)

We open a third connection:
Unstable and worse latency!

Source port: 5327 8467 —— 9375
- _
__S- -
w b
E —
= 3 1[:
&)
-
= Q-) e
© o0
S°L L o r
| | |
0 50 100 150

Timestamp (s)

Insight #1: Flows experiences path changes at a
second-level time scales

Source port: 2327

)l['stable

i S i r___......:z

I I
0 50 100 150
Timestamp (s)

90 100
|

|

1
::::-.......__.’"""-::
I {

Latency (ms)
80

Insight #2:
Flows experience unfair performance

Source port: 2327

100
I
L
1
:::c____‘""""::
i

80

Latency (ms)
90
2

- T ' 1
0) 50 100 150
Timestamp (s)

Traffic Engineering (TE) :
balance flows of traffic in a network

Periodic TE re-optimization in cloud networks:
e 2011: MPLS autobandwidth in Microsoft WAN*
e today: (claimed) SDN-based TE at Amazon, Google, Microsoft

Two-phase TE:
 compute (multiple) tunnels among region pairs
e compute traffic splitting ratios among tunnels

* typically hash-based implementation -> flow consistency
* risk of reshuffling flow packets upon splitting ratio update!

* A. Pathak et al “Latency Inflation with MPLS-based Traffic Engineering” IMC 2011

Stateless hash-based traffic splitting

path A
1 /e
TCP connection flow
1 th B
®O-— O
// "
o1 / index
Ve
L// path C 0
Psrc, VIP | 1
src, i
L > Hash % 6 2
TCP src, dst : _L) 3
payload -
4
)

nexthop

O O O W m »r

Stateless hash-based traffic splitting: packets
belonging to the same connection may be rerouted
when traffic splitting ratios are modified

path A
1/6)
_.’%/ TIPS
//
R4 index nexthop
7/
L// 1/3 path C 0 A
Psrc,VIP | 1 °
src, i
TCP dst :" > HaSh%G—LZ B
src, ds I
2 3 -> B
payload p (F:<
5 C

Let’s open a new connection and dissect it:
latency = base propagation latency + congestion

—— Raw Latency

RTT (ms)
74 75 76 77 78 79 80

T T |
13:30 14:00 14:30

Time [Hr:Min]

The technical yet necessary part (bear with me):
Extracting base propagation latency

Rolling-minimum sliding window:
» stable if 3 out of 4 samples are within 0.5ms
* update base propagation latency only if stable AND >0.5ms change

-

“:' k= 1sec= ! = qmm---- .
v . ¥
L , Transient spike 2 0.5 ms
T ’ (unstable)

latency (ms)

} Small variation < 0.5 ms
> (stable)

time (S) Wh Whne1 Whio Whis Whay

1-secbinlatency | 79 82 83 82|98 (68| 7 |71 oo e

Sliding window
Base propagation N/A NJA NJA 7.9 7.9 7.9 7.9 6.8 (running minimum)

Ignore output from unstable windows w,,.,and w,, .,
Replace missing output with last valid propagation delay

)
E
-
o

The filtered base propagation latency

—— Filtered Latency

The interesting part:

Are these really path changes?

|
13:30

l
14:00

Time [Hr:Min]

|
14:30

ead ey intuition: a path change from a high to a low latency

=4 path causes packet reordering

The path change detector is accurate
and conservative

—— Raw Latency
8_
We correlate packet reordering o
events with propagation latency: =
E]
=~
. = ©
,l.e., a oo~
Lo _
latency decrease >0.5ms is a "
E_
path change . l l
13:30 14:00 14:30
Time [Hr:Min]
, l.e.,
path Changes within 0.5ms i — Filtered Latency Step Change >0.5ms
-> conservative approach)
z®
* henceforth, latency means base E o
propagation latency o =1 — | IH_1 T
E_ T

| | |
13:30 14:00 14:30
Time [Hr:Min]

We can now detect path changes
We set up an extensive measurement studv of AWS

Config,. Macro-scale Micro-scale
of DC Pairs 120 4

of Flows 512 512
Probing Rate 10 probes every 30s 5 probes/s
Flow Generation Dynamic (every 30s) Static
Duration 2 days 1 week
Ping Mechanism Raw Sockets TCP Ping

Trans-Oceanic cables across the
Atlantic, Pacific, and Indian
Oceans, and the Mediterranean,
Red, and South China Seas

Redundant 100GbE network circles the globe
* Operate without impact through link cut

* Redundant private capacity between all
regions except China

Picture credits: AWS re:Invent 2016: Tuesday Night Live with James Hamilton

Some AWS regions have high latency variations
across different flows (i.e., different source ports)

.0+ —
We looked at all the 120 region % oo 5th percentie = 32.63 %
pairs in AWS: g, 06-
e Latency inflation: E’ 2
max-latency/min-latency 8
 >32% latency inflation for 5% i I T T R

of region pairs

O Latency difference (max-min) O % Latency change (diff/min)

T
20 40 60 80 100

We zoomed into four AWS region
pairs for the micro-scale
experiments o

Latency (ms)
10
|

Percentage change (%)

* neither the worst nor the best o T . | .
. Sao Paulo, Singapore, Sydney, Oregon,
pairs Montreal Paris Tokyo Virginia

[
0

The flow-latency spectrum over time for four
different pairs of regions

95’th perc
75’th perc

Latency (ms)
124

oS 25’th perc

. ot N R F
" Tules ed Thlurs F'ri Si’:\t Stlm M(I)n Tules Wie% Flri Siat SLIm Mém
Time (hr) h (d') m Time (hr)
.. . Sao Paulo - Montreal aths (dis)appear!!! - Viraini
stable distribution P PP Oregon - Virginia

but...

[
N
~

Latency (ms)
162
Latency (ms)
112

151
!

105

T T T T T T T T T T T T T
Tues Wed Thurs Fri Sat Sun Mon Tues Wed Thurs Fri Sat Sun Mon

. Tmem The median case much worse Time (hr)
Singapore - Paris Sydney - Tokyo
than the best case

Stable distribution but... are the flows routed
always on the same path? Not necessarily!

Consider all events when a flow changes
path:

 40% of the cases, the flow moves
away within 10 seconds

Oregon-Virginia Sydney-Tokyo === =
Paris-Singapore = = = = = Sao Paulo-Montreal

<
—

Fraction of flow path change events

1 100 10000
Flow persistence (s)

Flows routes on low-latency paths are more likely
to experience a path change

We counted the number of flows moved away from a path per

flow latency class (Oregon-Virginia):

* number of moved flows is inversely proportional to flow latency
* likely constrained shortest-path-based TE

e Churn — Latency Class

o

o

9 o

T -2

o 3

= Sy
2 (= g
= S
s o1 T © =
£ ¥ B
% < %
3 | — N]
o « N

o A

_8 —

g R

Z T l ' ! ! !

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of latency classes

Measuring the level of “unfairness” among flows

We measure the flow latency of each flow in 20-sec interval bins
 we plot the 50’th, 95’th, 99’th latency percentiles
 bimodal behaviour at 50’th

—— NMledian 95%ile 9%ile

1.0
|

Fraction of TCP connections
00 02 04 06 0.8

T | | T |
106 108 110 112(114 116 118

Latency (ms)

Measuring instabilities during “low” or "high” season

Large cloud networks tune the “aggressiveness” of their TE
mechanisms according to the users’ load

We performed again the same measurements during “low”
season, expecting to see less path changes

— Oregon Virginia — Before

1.0

0.6

0.4

0.2

update churn?

| | | | | |
0 100 200 300 400 500
Flow latency persistence (s)

Fraction of flow path change events

. I is this network

0.0

Moving 1K of data can take 18% more time when
the flow is mapped to a high latency path

We generated a large number of iperf tests from Oregon (US
west coast) to Virginia (US east coast)

We moved 1K of data in each iperf test
We did not observe any packet retransmission

Fraction of iperf connections
0.0 02 04 06 08 1.0
|

\+

Latency (ms)

Conclusions and takeaway

We measured the largest worldwide cloud backbone network (AWS):
* Insight #1: very reactive TE, especially across some regions
* Insight #2: flows experience unfair treatment

* both in Round Trip Time and in the number of path changes

Far-reaching implications on the cloud €< - tenants interaction:
e congestion control: TCP Cubic suffers from packet reordering

* latency: low-latency geo-distributed emerging applications
require low and deterministic latencies

» selfish-routing: application developers can force multiplexing of
traffic on shortest paths, ultimately defeating cloud TE operation

Thank you!
Marco Chiesa < mchiesa@kth.se >

KTH Royal Institute of Technology

Selfish routing: giving control to the cloud tenants
may lead to an unhealthy situation

2/3 10ms
1 /= N\
e m— Q‘ O
user 3 NEEE———) Q /
1
/3 100ms

10ms - low 100ms - high
latency path latency path

Selfish routing: giving control to the cloud tenants
may lead to an unhealthy situation

2/3 10ms
1 /= N\
e m— Q‘ O
user 3 NEEE———) Q /
1
/3 100ms

10ms - low 100ms - high
latency path latency path

Flow path change interarrival time

0.8

0.6

CDF

0.4

0.2
I

0.0

1 5 10 50 100 500 1000 5000

Flow persistence — forward path
— MTRL_SPLO - - PRIS_SNGP -—- SDNY_TKYO — - VGNI_ORGN

0.8
I

CDF

0.4

I I I
1 100 _ 10000
Flow latency persistence (s)

Flow persistence —reverse path
— MTRL_SPLO PRIS_SNGP -—- SDNY_TKYO VGNI_ORGN

0.8

1

CDF

0.4

0.2

0.0

I I I
1 100 - 10000
Flow latency persistence (s)

CDF

0.8

0.6

0.4

0.2

0.0

Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

— MTRL_SPLO PRIS_SNGP -—- SDNY_TKYO VGNI_ORGN

I I I I
500 1000 1500 2000
of path changes

2500

Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

o — Median 95%ile 99%ile
(00
3 -
O
Lo |
0O
O« |
o
QA
S -
O _
© | | | | | | I
76 77 78 79 80 81 82

Latency (ms)

Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

S —— Median 95%ile 99%ile
0 _
o
(o)
O |
O
O«
o
Al
S -
o _/
S -

I I I I I I I I
158 160 162 164 166 168 170 172
Latency (ms)
35

Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

o —— Median 95%ile 99%ile
w —
o
@ —
LLO
O
O« |
o
QA
S -
O _
© | | | |
122 123 124 125

Latency (ms)

Fraction of flow path change events

Consider all events when a flow changes
path:

 40% of the cases, the flow moves
away within 10 seconds

Sydney-Tokyo = ===
SaoPaulo-Montreal

Oregon-Virginia
Paris-Singabore

0.8 1.0

0.6

0.2

0.0

10000
Flow persistence (s)

Fraction of 20-sectime interval bins

0.2 0.4 0.6 0.8 1.0

0.0

Stable distribution but... are the flows routed
always on the same path? Not necessarily!

We count #path-changes each 20 seconds

* Sidney-Tokyo: during 1% of the time,
we observe all the path changes

inia-Oregon: during 85% of the
e, at least some flows change path

- PRIS_SNGP -—- SDNY_TKYO — - VGNI_ORGN

| | | | | |
200 300 400 500
of path changes

600

This talk in a nutshell

We measured the largest worldwide cloud backbone network (AWS):
* Insight #1: very reactive TE performed across datacenters
* Insight #2: tenants’ flows experience unfair treatment

* both in Round Trip Times and number of path changes

Far-reaching implications on how clouds and tenants interact:
e congestion control: TCP Cubic suffers from packet reordering

* latency: low-latency geo-distributed emerging applications
require low and deterministic latencies

» selfish-routing: application developers can force multiplexing of
traffic on low-latency paths, ultimately hindering cloud TE operation

