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Let’s open a TCP connection between
Oregon and Virginia
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Stable Round Trip Time latency of roughly 80ms

Source port: 2327
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We open a second connection:
Up to 10% better latency!

Source port: 9327 8467
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We open a third connection:
Unstable and worse latency!

Source port: 5327 8467 —— 9375
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Insight #1: Flows experiences path changes at a
second-level time scales

Source port: 2327
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Insight #2:
Flows experience unfair performance

Source port: 2327
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Traffic Engineering (TE) :
balance flows of traffic in a network

Periodic TE re-optimization in cloud networks:
e 2011: MPLS autobandwidth in Microsoft WAN*
e today: (claimed) SDN-based TE at Amazon, Google, Microsoft

Two-phase TE:
 compute (multiple) tunnels among region pairs
e compute traffic splitting ratios among tunnels

* typically hash-based implementation -> flow consistency
* risk of reshuffling flow packets upon splitting ratio update!

* A. Pathak et al “Latency Inflation with MPLS-based Traffic Engineering” IMC 2011




Stateless hash-based traffic splitting
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Stateless hash-based traffic splitting: packets
belonging to the same connection may be rerouted
when traffic splitting ratios are modified
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Let’s open a new connection and dissect it:
latency = base propagation latency + congestion

—— Raw Latency
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The technical yet necessary part (bear with me):
Extracting base propagation latency

Rolling-minimum sliding window:
» stable if 3 out of 4 samples are within 0.5ms
* update base propagation latency only if stable AND >0.5ms change
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The filtered base propagation latency

—— Filtered Latency

The interesting part:

Are these really path changes?
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ead ey intuition: a path change from a high to a low latency

=4 path causes packet reordering




The path change detector is accurate
and conservative

—— Raw Latency
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We can now detect path changes
We set up an extensive measurement studv of AWS

Config,. Macro-scale Micro-scale
# of DC Pairs 120 4

# of Flows 512 512
Probing Rate 10 probes every 30s 5 probes/s
Flow Generation Dynamic (every 30s) Static
Duration 2 days 1 week
Ping Mechanism Raw Sockets TCP Ping

Trans-Oceanic cables across the
Atlantic, Pacific, and Indian
Oceans, and the Mediterranean,
Red, and South China Seas

Redundant 100GbE network circles the globe
* Operate without impact through link cut

* Redundant private capacity between all
regions except China

Picture credits: AWS re:Invent 2016: Tuesday Night Live with James Hamilton



Some AWS regions have high latency variations
across different flows (i.e., different source ports)
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The flow-latency spectrum over time for four
different pairs of regions
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Stable distribution but... are the flows routed
always on the same path? Not necessarily!

Consider all events when a flow changes
path:

 40% of the cases, the flow moves
away within 10 seconds

Oregon-Virginia Sydney-Tokyo === =
Paris-Singapore = = = = = Sao Paulo-Montreal
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Flows routes on low-latency paths are more likely
to experience a path change

We counted the number of flows moved away from a path per

flow latency class (Oregon-Virginia):

* number of moved flows is inversely proportional to flow latency
* likely constrained shortest-path-based TE

e Churn — Latency Class
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Measuring the level of “unfairness” among flows

We measure the flow latency of each flow in 20-sec interval bins
 we plot the 50’th, 95’th, 99’th latency percentiles
 bimodal behaviour at 50’th
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Measuring instabilities during “low” or "high” season

Large cloud networks tune the “aggressiveness” of their TE
mechanisms according to the users’ load

We performed again the same measurements during “low”
season, expecting to see less path changes
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Moving 1K of data can take 18% more time when
the flow is mapped to a high latency path

We generated a large number of iperf tests from Oregon (US
west coast) to Virginia (US east coast)

We moved 1K of data in each iperf test
We did not observe any packet retransmission
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Conclusions and takeaway

We measured the largest worldwide cloud backbone network (AWS):
* Insight #1: very reactive TE, especially across some regions
* Insight #2: flows experience unfair treatment

* both in Round Trip Time and in the number of path changes

Far-reaching implications on the cloud €< - tenants interaction:
e congestion control: TCP Cubic suffers from packet reordering

* latency: low-latency geo-distributed emerging applications
require low and deterministic latencies

» selfish-routing: application developers can force multiplexing of
traffic on shortest paths, ultimately defeating cloud TE operation

Thank you!
Marco Chiesa < mchiesa@kth.se >

KTH Royal Institute of Technology




Selfish routing: giving control to the cloud tenants
may lead to an unhealthy situation
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Selfish routing: giving control to the cloud tenants
may lead to an unhealthy situation
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Flow path change interarrival time
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Flow persistence — forward path
— MTRL_SPLO - - PRIS_SNGP -—- SDNY_TKYO — - VGNI_ORGN
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Flow persistence —reverse path
— MTRL_SPLO PRIS_SNGP -—- SDNY_TKYO VGNI_ORGN
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Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network

— MTRL_SPLO PRIS_SNGP -—- SDNY_TKYO VGNI_ORGN

I I I I
500 1000 1500 2000
# of path changes

2500



Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network
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Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network
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Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network
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Fraction of flow path change events

Consider all events when a flow changes
path:

 40% of the cases, the flow moves
away within 10 seconds
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Stable distribution but... are the flows routed
always on the same path? Not necessarily!

We count #path-changes each 20 seconds

* Sidney-Tokyo: during 1% of the time,
we observe all the path changes

inia-Oregon: during 85% of the
e, at least some flows change path
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This talk in a nutshell

We measured the largest worldwide cloud backbone network (AWS):
* Insight #1: very reactive TE performed across datacenters
* Insight #2: tenants’ flows experience unfair treatment

* both in Round Trip Times and number of path changes

Far-reaching implications on how clouds and tenants interact:
e congestion control: TCP Cubic suffers from packet reordering

* latency: low-latency geo-distributed emerging applications
require low and deterministic latencies

» selfish-routing: application developers can force multiplexing of
traffic on low-latency paths, ultimately hindering cloud TE operation




