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Let’s open a TCP connection between
Oregon and Virginia

2
* map of USA taken from Bing Maps



Stable Round Trip Time latency of roughly 80ms

Source port:
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5327



We open a second connection:
Up to 10% better latency!

Source port:
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5327 8467

~10%



We open a third connection:
Unstable and worse latency!

Source port:
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5327 8467 9375



Insight #1: Flows experiences path changes at a 
second-level time scales

Source port:
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5327 8467 9375

31s

6s

stable



Insight #2: 
Flows experience unfair performance

Source port:
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5327 8467 9375

33%



Why do we see so many different latency behaviours?
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Periodic TE re-optimization in cloud networks:
• 2011: MPLS autobandwidth in Microsoft WAN*
• today: (claimed) SDN-based TE at Amazon, Google, Microsoft

Two-phase TE:
• compute (multiple) tunnels among region pairs
• compute traffic splitting ratios among tunnels

• typically hash-based implementation -> flow consistency
• risk of reshuffling flow packets upon splitting ratio update!

Traffic Engineering (TE) :
balance flows of traffic in a network
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* A. Pathak et al ”Latency Inflation with MPLS-based Traffic Engineering” IMC 2011
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Extract base propagation latency
• filter congestion
• we rely on variations of a 

rolling-minimum mechanism

Let’s open a new connection and dissect it:
latency = base propagation latency + congestion
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Rolling-minimum sliding window:
• stable if 3 out of 4 samples are within 0.5ms
• update base propagation latency only if stable AND >0.5ms change

The technical yet necessary part (bear with me):
Extracting base propagation latency
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Extract base propagation latency
• filter congestion
• we rely on variations of a 

rolling-minimum mechanism
The interesting part:

Are these really path changes?

The technical part:
Extracting base propagation latency
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The filtered base propagation latency



Key intuition: a path change from a high to a low latency
path causes packet reordering

1
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We correlate packet reordering
events with propagation latency:

• zero false positives, i.e., a 
latency decrease >0.5ms is a 
path change

• limited false negatives, i.e., 
path changes within 0.5ms 
-> conservative approach

• henceforth, latency means base
propagation latency

The path change detector is accurate
and conservative
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Step Change >0.5msFiltered Latency



We can now detect path changes
We set up an extensive measurement study of AWS

17Picture credits: AWS re:Invent 2016: Tuesday Night Live with James Hamilton



Some AWS regions have high latency variations 
across different flows (i.e., different source ports)
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We looked at all the 120 region 
pairs in AWS:
• Latency inflation:

max-latency/min-latency
• >32% latency inflation for 5% 

of region pairs

We zoomed into four AWS region 
pairs for the micro-scale
experiments
• neither the worst nor the best 

pairs
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The flow-latency spectrum over time for four
different pairs of regions

19

Sydney - Tokyo

Oregon - Virginia

Singapore - Paris

Sao Paulo - Montreal paths (dis)appear!!!stable distribution 
but…

The median case much worse
than the best case
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Stable distribution but… are the flows routed
always on the same path? Not necessarily!
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Consider all events when a flow changes
path:
• 40% of the cases, the flow moves

away within 10 seconds

Flow persistence (s)
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Flows routes on low-latency paths are more likely
to experience a path change
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We counted the number of flows moved away from a path per 
flow latency class (Oregon-Virginia):
• number of moved flows is inversely proportional to flow latency
• likely constrained shortest-path-based TE



Measuring the level of ”unfairness” among flows
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We measure the flow latency of each flow in 20-sec interval bins
• we plot the 50’th, 95’th, 99’th latency percentiles
• bimodal behaviour at 50’th
• 12% difference for all percentiles

12% 
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Measuring instabilities during ”low” or ”high” season
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Large cloud networks tune the “aggressiveness” of their TE 
mechanisms according to the users’ load
We performed again the same measurements during “low” 
season, expecting to see less path changes

33%
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Moving 1K of data can take 18% more time when 
the flow is mapped to a high latency path
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We generated a large number of iperf tests from Oregon (US 
west coast) to Virginia (US east coast) 
We moved 1K of data in each iperf test
We did not observe any packet retransmission

18%



Conclusions and takeaway
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We measured the largest worldwide cloud backbone network (AWS):
• Insight #1: very reactive TE, especially across some regions
• Insight #2: flows experience unfair treatment

• both in Round Trip Time and in the number of path changes

Far-reaching implications on the cloud ßà tenants interaction:
• congestion control: TCP Cubic suffers from packet reordering
• latency: low-latency geo-distributed emerging applications

require low and deterministic latencies
• selfish-routing: application developers can force multiplexing of

traffic on shortest paths, ultimately defeating cloud TE operation
Thank you!

Marco Chiesa < mchiesa@kth.se >
KTH Royal Institute of Technology



Selfish routing: giving control to the cloud tenants 
may lead to an unhealthy situation
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Selfish routing: giving control to the cloud tenants 
may lead to an unhealthy situation
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Flow path change interarrival time
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Flow persistence – forward path
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Flow persistence –reverse path
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Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network
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Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network
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Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network
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Traffic Engineering (TE) performed to (re)balance
flows of traffic in a network
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Stable distribution but… are the flows routed
always on the same path? Not necessarily!
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Flow persistence (s)
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Consider all events when a flow changes
path:
• 40% of the cases, the flow moves

away within 10 seconds
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We count #path-changes each 20 seconds
• Sidney-Tokyo: during 1% of the time, 

we observe all the path changes
• Virginia-Oregon: during 85% of the 

time, at least some flows change path



This talk in a nutshell
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We measured the largest worldwide cloud backbone network (AWS):
• Insight #1: very reactive TE performed across datacenters
• Insight #2: tenants’ flows experience unfair treatment

• both in Round Trip Times and number of path changes

Far-reaching implications on how clouds and tenants interact:
• congestion control: TCP Cubic suffers from packet reordering
• latency: low-latency geo-distributed emerging applications

require low and deterministic latencies
• selfish-routing: application developers can force multiplexing of

traffic on low-latency paths, ultimately hindering cloud TE operation


