Worldwide Maximum Accuracy of Active IP Geolocation

Massimo Candela NTT massimo@ntt.net

Active IP geolocation

- Deriving the geographical location of a connected device by means of latency measurements
 - Devices (landmarks) of known position ping a target device of unknown position
 - Latencies are converted to distances
 The conversion factor (km/ms) is called Speed-Of-Internet (SOI)
 - Multiple distances are used to approximate the target position

Disclaimer

- We do not describe a geolocation system
- It's not an accuracy evaluation of any geolocation method or service
- We will focus only on IP addresses of the Internet Infrastructure
- Results are based (and possibly biased) on RIPE Atlas which currently offers the best characteristics for our intent

We want to...

- 1. Calculate the maximum theoretical accuracy achievable
 - Worldwide and for each region
- 2. Study the effects produced by the position of landmarks and by the strategy followed for their enrolment (Infrastructure vs Edge landmarks)
 - Do they produce different SOI?
 - Do they reach the target with a different amount of hops?
- 3. Quantify the accuracy for various amounts of used landmarks
- 4. Verify if the accuracy improves by considering only areas with "Internet Infrastructure"
- 5. Report to the community parameters useful for a possible geolocation system implementation

Disclaimer

This product does not support the current generation of the Internet Protocol, IPv6.

Datasets

- Targets: Anchors + NLNOG Ring nodes
- Sources: Probes + Anchors
 - Probes collect measurements from the edge of the Internet and they are available in a greater amount
 - Anchors collect measurements from the infrastructure of the Internet, in more controlled and stable conditions
- We produce two ground-truth datasets, Infrastructure (Anchors) and Edge (Probes), for a total of 23 million ping measurements
 - 10 pings for each source-target pair, we take the minimum

Coverage

Model

- To calculate the distance **d** between the target and a landmark, we first estimate the Round Trip Time (RTT)
- The observed RTT is then used to compute the One-Way Delay *o*, calculated as RTT/2
 - This is a (common) simplification/compromise that assumes that the path is traveled in both ways with equal time
- Finally we estimate the distance as d = p * o where p is the SOI
 - Both o and p are affected by errors
- If you know the real distance d', you can calculate the error e as d = d' + e

Speed Of Internet of the World

- The SOI of the entire world is:
 - 71.89 km/ms for the Infrastructure dataset
 - 67.11 km/ms for the Edge dataset
 - probes reach the targets more slowly (~7%)
 - Pretty far from 2/3 or 4/9 of the speed of light
- To understand the difference, we analysed the Atlas traceroutes
 - On average Anchors reach the targets with 10.6 hops while probes in 13.2 hops

How to calculate the accuracy?

- The method used for calculating the maximum accuracy of a positioning system is usually the Cramér–Rao Lower Bound (CRLB)
- The CRLB defines a lower bound to the mean square error (MSE) of a position estimate
- Geolocation accuracy can be defined as the square root of the minimum mean square error (RMSE)

3D Cramér–Rao Lower Bound (CRLB)

Worldwide accuracy

Worldwide accuracy for a given amount of landmarks

Infrastructure				Edge	
Landmarks	Median RMSE (km)	Coverage	Landmarks	Median RMSE (km)	Coverage
10	615	1.3%	10	651	1.3%
20	501	13.6%	20	512	11.5%
50	390	40.1%	50	399	35.6%
100	314	60.3%	100	320	51.9%
200	256	68.2%	200	249	69.3%
313	254	71.0%	2166	78	91.1%

Regional results

	Asia	Europe	North Am.
Landmarks	37	191	55
p (km/ms)	106.51	68.33	95.63
k	0.39	0.30	0.25
Avg. number of hops	10.5	7.7	8.0
Avg. geographical distance (km)	1561	891	1447
Avg. hop length (km)	149	116	181

	Asia	Europe	North Am.	South Am.	Oceania	Africa	Middle Ea.
Landmarks	484	500	500	210	260	242	238
p (km/ms)	97.13	62.60	73.16	61.40	96.67	80.13	21.12
k	0.36	0.33	0.39	0.42	0.33	0.41	1.03
Avg. number of hops	13.1	10.2	12.4	13.9	9.5	11.2	17.0
Avg. geographical distance (km)	1559	1132	1301	970	1520	1103	193
Avg. hop length (km)	119	111	105	70	160	98	11

- *P* is the SOI (ms to km conversion factor)
- *K* is the proportionality factor between standard deviation of the error and the distance
 - The distance estimation is more reliable for Anchors

Edge

Europe

North America

Asia

Non-uniform distribution of the targets

• How much the accuracy improves if we consider only areas with "Internet Infrastructure"?

Non-uniform distribution of the targets

Infrastructure vs. Edge (single SOI)

Infrastructure				Edge	
Landmarks	Median RMSE (km)	Coverage	Landmarks	Median RMSE (km)	Coverage
10	532	9.7%	10	612	5.3%
20	324	68.3%	20	491	52.7%
50	150	91.1%	50	249	86.7%
100	61	97.5%	100	141	94.7%
200	18	97.9%	200	83	98.5%
313	6	97.9%	2166	3	100.00%

• Uniform vs. Non-uniform (a SOI per region)

	Uniform		Non uniform		
Region	Median RMSE (km)	Coverage	Median RMSE (km)	Coverage	
Africa	266	88.0%	2	94.3%	
Asia	196	89.5%	16	100.0%	
Europe	47	100.0%	28	100.0%	
Middle-East	118	52.7%	3	99.6%	
North Am.	133	65.7%	30	100.0%	
Oceania	141	88.5%	1	100.0%	
South Am.	130	80.8%	2	100.0%	

Conclusions

- IP infrastructure geolocation with active measurements is feasible in terms of precision
- Using a single value of SOI for the entire world is a terrible idea
- The SOI is linearly correlated to the average hop length (source-target distance/hops)
 - Which varies based on the landmark type and region. We provided these values
- Infrastructural landmarks are slightly more precise than edge landmarks
 - When the number of landmarks involved in geolocation increases, the advantage of using infrastructural nodes is less evident
 - The number of landmarks is a more decisive factors BUT this is an extremely important parameter for the scalability of a real geolocation system

Questions?

massimo@ntt.net

@webrobotics

Thanks to my co-authors:

- Enrico Gregori, CNR, Pisa, Italy
- Valerio Luconi, University of Pisa, Italy
- Alessio Vecchio, University of Pisa, Ital