
Cloudflare
and RPKI at scale
Louis Poinsignon

Martin J. Levy

Introduction

Louis Poinsignon:

Network Engineer at Cloudflare in San Francisco

Open-source projects including flows and RPKI

Network data collection (BGP, flows, peering-portal)

https://blog.cloudflare.com/rpki-details/
https://blog.cloudflare.com/rpki/

Featured in RIPE’s video!

https://www.youtube.com/watch?v=Y9vbbxr-GbI

https://www.youtube.com/watch?v=Y9vbbxr-GbI

How did it start?

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

The Initial Story

Authoritative DNS route hijack in April 2018

DNS route announced via peering session (in Chicago)

This affected our network, hence our DNS Resolver

What should we do?

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

The Initial Story

At the time…

150+ PoPs

26,000 BGP sessions

IP space from five RIRs

Just the RIPE Validator [1]

How to distribute a prefix list efficiently?

[1] Cloudflare is very grateful for the RIPE Validator s/w

The Initial Story

July: started deploying internally GoRTR.

August: open-source release.

https://github.com/cloudflare/gortr

September → December:

● Turn up RTR sessions

● Signing prefixes`

https://github.com/cloudflare/gortr

Diagram

Behind the scene (until January 2019)

RIPE Validator providing list of prefixes

Running in a Mesos cluster

With a cronjob:
● Fetching the data
● Filtering (remove > /24 and > /48 and duplicates)
● Signing it
● Making it available to our edge

https://rpki.cloudflare.com/rpki.json was born.

https://rpki.cloudflare.com/rpki.json

Effects

The question everyone asked us:

How much traffic was affected?

Many invalids. Little traffic in practice

(we had a default or valid less specific)

Except in one place: Few gigabits per seconds displaced due to

geographical more specific

https://w
w

w
.flickr.com

/photos/thure/6287816628/

Accounting

Using flows, we see at least 30% of our traffic being valid

Very little/none invalid

We use GoFlow for accounting. (Other tools compatible with flows: pmacct,

Kentik, etc)

Traffic with a valid ROA

Traffic with a no ROA

Signing the routes

Signing the routes

Cloudflare has IP space from five RIRs

(no space from twnic/jpnic/cnnic)

RIR Features Ease of use API

AFRINIC ⭐ ⭐ ⭐

APNIC ⭐⭐ ⭐⭐ ⭐

ARIN ⭐⭐ ⭐⭐ ⭐⭐

LACNIC ⭐ ⭐⭐⭐ ⭐

RIPE ⭐⭐⭐ ⭐⭐⭐ ⭐⭐⭐

N
ot

 a
 u

ni
fie

d
ex

pe
ri

en
ce

!

Rankings

Features: RRDP, 2 factors, extra info, CA

Ease of use: steps to sign a ROA, multi user

API: functional, complete and accessible

Comparison - AFRINIC

Hard to set up: client TLS certificate to create (BPKI) in order to do RPKI.
Buggy.
No RRDP.
No API.
No auto-renew.
Hosted CA possible.

Extensive certificate informations.

Comparison - APNIC

Two factors or client certificate.
RRDP.
Auto-renew.
Allow BGP batch signing.
(slight bugs with large amount of

prefixes).
Hosted CA possible.

Draft for API:
https://www.apnic.net/manage-ip/apnic-services/ser
vices-roadmap/public-api-draft-for-members/

Comparison - ARIN

Two factors. Separate signing key.
No RRDP.
No auto-renew.
Semi-functional API (add).
Dashboard not easy to find.
Hosted CA possible.
Slow rsync update (4 times a day).

Some certificate information.

Comparison - LACNIC

No two factors. Single user.
No RRDP.
No API.
Auto-renew opt-in.
Allow BGP batch signing.
Based off RIPE.
No Hosted CA.

Some extra info (revoked, path).
Incorrect certificate encoding (BER). High turnover of certificate (few days).

Comparison - RIPE

Two factors.
RRDP.
Auto-renew.
Nice API.
Allow BGP batch signing.
No Hosted CA (theoretically).
No extra information. But history.

Incorrect certificate encoding (BER).

Automation

We automated prefixes adding on
ARIN and RIPE with a Salt state.

Two secrets to store (API key and
signing key).

Cannot delete or list via API for
ARIN: very prone to mistakes if user
wants to reduce the amount of
ROA files.

Validator

Why write a new validator?

November 2018: First release of NLnet Labs Routinator 3000 [1]

We were still using RIPE Validator

We wanted something more custom: with monitoring and RRDP

By building it in Golang:

● Many APIs and easy concurrency

● Community doing cryptography

● Cloudflare uses Golang a lot (cfssl, sidh, etc.)

[1] https://github.com/NLnetLabs/routinator

Challenges

Juniper bugs: Routing Validation disabled

Difficulties: rsync, BER encoded instead of DER, conditions in cryptography

https://tools.ietf.org/html/rfc7730

Cloudflare’s RPKI Toolkit

Sets of libraries and tools written in Go

Including OctoRPKI 🐙

https://blog.cloudflare.com/cloudflares-rpki-toolkit/

https://github.com/cloudflare/cfrpki

Cloudflare’s RPKI Toolkit

Libraries
● CER/ROA/MFT decoder
● PKI manager (exploring, validating)
● RRDP/rsync fetcher
● Validation of prefixes

Software
● Local validator (without RRDP/rsync)
● API tools for a distributed version without filesystem
● OctoRPKI
● Certificate Transparency tool

OctoRPKI - Features (1/2)

● Decodes TAL/CER/ROA/MFT

● Explore via Manifest or directory.

● RRDP support (and failover to rsync)

● Monitoring (Prometheus and JSON API which includes logs)

● Dockerizeable

● Handle stability (generate file when done)

https://hub.docker.com/r/cloudflare/octorpki

OctoRPKI - Features (2/2)

● Full compatibility with GoRTR (including signing the JSON file)

● Server + caching options for generated file (CDN friendly)

● Configuration options

○ Disable/Enable components

○ Modes (server, one-off)

● ~5-15 minutes for a full cold-start sync

OctoRPKI - Compute footprint

OctoRPKI v1.1.3
RIPE Validator v2.25

Routinator v3.3.0

Monitoring

API
Validator

ROA list

OctoRPKI - Run it yourself
$ docker run -ti \
 -p 8080:8080 \
 -v $PWD/cache:/cache \
 -v $PWD/tals/arin.tal:/tals/arin.tal \
 cloudflare/octorpki

Container image

Adding ARIN TAL

Use cache folder on host

Open port 8080 on host

https://hub.docker.com/r/cloudflare/octorpki

GoRTR

OctoRPKI does not embed a RTR server. Modular and independence!

Fully compatible with GoRTR

Signs the prefix list to ensure a safe distribution of the file.

Can run natively on Juniper!

$ docker run -ti \
 -p 8082:8082 \
 -v $PWD/example.pub:/example.pub \
 cloudflare/gortr \
 -verify.key /example.pub \
 -cache https://YOUR_ROA_URL

https://github.com/cloudflare/gortr

GoRTR

The only software to support plaintext, SSH and TLS as transports

https://github.com/cloudflare/gortr#configurations

GoRTR without installing anything

SSH:

rtr.rpki.cloudflare.com:8283 (user: rpki / pass: rpki)

Plaintext:

rtr.rpki.cloudflare.com:8282

Just configure into your router and go!

https://github.com/cloudflare/gortr#configurations

Cloudflare’s Internal Version

rpki.cloudflare.com

Cloudflare’s Internal Version

Provides https://rpki.cloudflare.com/rpki.json

Also a GraphQL API for the dashboard

Certificate Transparency

Historical records of certificates

Contains a chain (root → ROA)

Sent by our validator

https://ct.cloudflare.com/logs/cirrus

Other data

Other data - so how fresh are those ROAs?

RIPE regenerates
certificates!

ARIN uses
ten year
expire

LACNIC
random
expires

Future projects

Future projects or ideas

Certificate encoder, ASPA.

More toolings and visualizations around RPKI (BGP collection):

● Integration in our portal https://peering.cloudflare.com/ (ask

for your free access)

https://peering.cloudflare.com/

Who validates?

The Probing Project

Could we probe the entire Internet [1] to see who is
doing validation?

[1] v4 IPs that are public and open to probing, around 3.9 billions

Who?

Involved in this project and special thanks:

● Job Snijders: NTT, NLNOG

● Jérôme Fleury, Vasco Asturiano: Cloudflare

Methodology

1. Run two tests with zmap (~2hrs/test):

one test with behind an RPKI valid prefix and ;

one test behind an RPKI invalid prefix

2. Sum the IPs that replied by range for each test

3. Visualize the ratio of replies between the two tests per prefix

Methodology

Ratio

Received with source as invalid prefix

Received with source as valid prefix

Hilbert
1024x1024 → 1 pixel per /20

Good!

Hilbert

AT&T
Announced IP addresses

Learnings

AT&T has ~400k /24.

Easiest to visualize because big blocks.

Could we automatically identify networks?

Going from “0 to 1” to “0 and 1” (0 good and 1 bad)

Simplify the identification of “validating prefixes”.

Requires training instead of defining specific

ratios.

Machine learning

Little particles of artificial
intelligence

https://w
w

w
.pexels.com

/photo/m
an-pouring-condim

ent-on-plate-of-food-2494658/Your network

Training

Take an easy sample to manually identify.

~6,500 /20 prefixes

Assisted by script: (with ASN mapping)

$./create_training.py \
 --input stripped-data.csv \
 --asn-valids 7018 \
 --asn-invalids 701 \
 --subnets 96.0.0.0/8 97.0.0.0/8 98.0.0.0/8 \
 --output training_data.csv

Classification

The SVM model will take a few

minutes to run on 433k /20’s.

Model improvements: adds more

variables (proximity to other

low-ratio prefixes…).

Results

Detected validating:

/20 detected: 28,199

/24 detected: 320k

less than AT&T total prefixes assumed validating:

not everything is responding to ICMP

Work in progress!

Recent Leaks And
Conclusions

Summary of Amazon Route Hijack

An attacker announces Amazon Authority DNS prefixes.

Cloudflare and Google accept them in specific locations.

Cloudflare and Google DNS resolvers use this route when clients request

the website, the attacker’s server is returned.

The server has a phishing website for the client.

Attacker gather credentials and steals Bitcoins.

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

Summary of Amazon Route Hijack

Amazon did not have signed routes

Cloudflare did not do RPKI validation + route filtering

If RPKI was deployed:

Route would have been rejected because wrong origin

https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

Summary of Verizon Route Leak

A company has two Internet accesses: Verizon and another ISP.

The ISP has a BGP optimizer which feeds more-specific routes.

Unfortunately, the ISP sends the routes to the company which end up being

sent to Verizon.

Verizon did not filter them and re-announces them to its peers and clients.

Cloudflare loses traffic.

https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://blog.cloudflare.com/the-deep-dive-into-how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-monday/

Summary of Verizon Route leak

Cloudflare had signed routes.

Verizon did not filter. Many networks accepted the leak.

Cloudflare filtering routes did not matter here.

If basic filtering was deployed:

Peering sessions would have been removed when going above prefix threshold.

AS-Path filtering could have avoided accepting routes.

If RPKI was deployed:

Routes would have been rejected because wrong length.
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/

https://blog.cloudflare.com/the-deep-dive-into-how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-monday/

What we learned

RPKI will not be the solution to everything. But in our stories...

Filtering solves Amazon being hijacked

Signing helps your network not being leaked

Deploy RPKI now
Because tomorrow is already too late

With filtering Without filtering

Thank you

Questions?

louis@cloudflare.com
@lpoinsig (twitter)

