
digitalocean.com

Automating Networks Using Salt, Without
Running Proxy Minions

Mircea Ulinic

RIPE 79, October 2019
Rotterdam, NL

2012 founded in
New York City

480+ employees1.3M+ developers and
teams

80M+ Droplets
launched to date

$123M+ funding
raised

3rd largest and fastest
growing cloud provider

Investors

peers around the world of RAM of storage

12 data centers in 8 global markets

1500+ 1.2PB+ 50PB

Brief Introduction to Salt

Salt is an event-driven and data-driven configuration management and
orchestration tool.

“In SaltStack, speed isn’t a byproduct, it is a design goal. SaltStack was created
as an extremely fast, lightweight communication bus to provide the foundation
for a remote execution engine. SaltStack now provides orchestration,
configuration management, event reactors, cloud provisioning, and more, all
built around the SaltStack high-speed communication bus.”

https://docs.saltstack.com/en/getstarted/speed.html4

https://docs.saltstack.com/en/getstarted/speed.html

Brief Introduction to Salt: Typical Architecture

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Minion Minion Minion...

5

https://docs.saltstack.com/en/latest/topics/topology/index.html

Brief Introduction to Salt: Multi-Master Architecture

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Minion Minion Minion...

6

MasterMaster ...

https://docs.saltstack.com/en/latest/topics/topology/index.html

Brief Introduction to Salt: Network Automation Topology
(when using a single Master)

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Proxy
Minion

Proxy
Minion

Proxy
Minion

...

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

7

https://docs.saltstack.com/en/latest/topics/topology/index.html

Typical Network Automation Topology using Proxies (1)

8

Proxy Minions are simple processes able to run anywhere, as long as:

1) Can connect to the Master.
2) Can connect to the network device (via the channel / API of choice - e.g.,

SSH / NETCONF / HTTP / gRPC, etc.)

Typical Network Automation Topology using Proxies (2)

9

Deployment examples include:

● Running as system services
○ On a single server
○ Distributed on various servers

● (Docker) containers
○ E.g., managed by Kubernetes

● Services running in a cloud
○ See, for example, salt-cloud

https://docs.saltstack.com/en/latest/topics/cloud/index.html

Typical Network Automation Topology using Proxies (3)

10

Proxy Minions imply a process always running in the background. That means,
whenever you execute a command, Salt is instantly available to run the
command. But also means:

- A process always keeping memory busy.
- System services management (one per network device).
- Monitoring, etc.

Not always beneficial, sometimes you just need a one-off command every X
weeks / months.

Introducing salt-sproxy (Salt Super Proxy)

11

https://salt-sproxy.readthedocs.io/

Salt plugin to automate the management and configuration of network devices
at scale, without running (Proxy) Minions.

Using salt-sproxy, you can continue to benefit from the scalability, flexibility and
extensibility of Salt, while you don't have to manage thousands of (Proxy) Minion
services. However, you are able to use both salt-sproxy and your (Proxy) Minions
at the same time.

https://salt-sproxy.readthedocs.io/

Remember slide #7?

https://docs.saltstack.com/en/latest/topics/topology/index.html

Master

Proxy
Minion

Proxy
Minion

Proxy
Minion

...

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

12

https://docs.saltstack.com/en/latest/topics/topology/index.html

Topology using salt-sproxy

salt-sproxy

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

13https://salt-sproxy.readthedocs.io/

https://salt-sproxy.readthedocs.io/

Topology using salt-sproxy

salt-sproxy

Network
Device

Network
Device

Network
Device

...

NETCONF

HTTP

SSH

14

This can be any server,
or your own computer.

https://salt-sproxy.readthedocs.io/

https://salt-sproxy.readthedocs.io/

Getting started with salt-sproxy: Installation

15https://salt-sproxy.readthedocs.io/

$ pip install salt-sproxy

See a recorded demo at:
https://asciinema.org/a/247697?autoplay=1

https://salt-sproxy.readthedocs.io/
https://asciinema.org/a/247697?autoplay=1

Build the database of devices you want to manage. For example, as a file:

Getting started with salt-sproxy: Setup example (1)

16https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

devices:
 - name: router1
 driver: junos
 - name: router2
 driver: iosxr
 - name: router3
 proxytype: junos
 - name: switch1
 driver: eos
 - name: fw1
 driver: panos
 host: fw1.firewall.as1234.net

/srv/pillar/devices.sls

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

When working with SLS files, make sure to reference it into the Pillar top:

Getting started with salt-sproxy: Setup example (1)

17https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

base:
 '*':
 - devices

/srv/pillar/top.sls

https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

Prepare the connection credentials:

Where <proxy type> is the name of the Proxy Module of choice, see
https://docs.saltstack.com/en/latest/ref/proxy/all/index.html; each proxy module
may have different arguments required for the connection.

Getting started with salt-sproxy: Setup example (2)

18https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

proxy:
 proxytype: <proxy type>
 username: <username>
 password: <password>
 [... other params - see doc ...]

/srv/pillar/proxy.sls

https://docs.saltstack.com/en/latest/ref/proxy/all/index.html
https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

For example, using the NAPALM Proxy Module:

Getting started with salt-sproxy: Setup example (2)

19https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

proxy:
 proxytype: napalm
 username: salt
 password: SaltSPr0xyRocks!
 host: {{ opts.id }}.as1234.net

/srv/pillar/proxy.sls

https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.napalm.html
https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

For example, using the NAPALM Proxy Module:

Getting started with salt-sproxy: Setup example (2)

20https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

proxy:
 proxytype: napalm
 username: salt
 password: SaltSPr0xyRocks!
 host: {{ opts.id }}.as1234.net

/srv/pillar/proxy.sls

SLS by default means
Jinja + YAML.

This can be a very
powerful feature.

The host field is rendered individually per
device. For example, the host will be

router1.as1234.net for the device name
router1, etc.

https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.napalm.html
https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

Tip: when you want to use your own credentials to manage the device

Getting started with salt-sproxy: Setup (2)

21https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

proxy:
 proxytype: napalm
 username: {{ salt.environ.get('USER') }}
 password: ''
 host: {{ opts.id }}.as1234.net

/srv/pillar/proxy.sls

The username field renders to the
username currently logged in (and

executing the command).

When password is empty, it’ll use your
SSH key for authentication.

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

Again, make sure to reference the /srv/pillar/proxy.sls file into the Pillar top:

Getting started with salt-sproxy: Setup example (2)

22https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

base:
 '*':
 - proxy
 - devices

/srv/pillar/top.sls

https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html

And, finally, let salt-sproxy know that the data is loaded from the Pillar:

Getting started with salt-sproxy: Setup example (3)

23

roster: pillar

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

After these three easy steps, you can start running commands:

Getting started with salt-sproxy: Usage

24https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

$ salt-sproxy ‘router*’ --preview-target
- router1
- router2
- router3

$ salt-sproxy ‘router*’ net.arp
… snip …

$ salt-sproxy ‘router*’ net.load_config \
 text=’set system ntp server 10.0.0.1’ test=True
… snip ...

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

After these three easy steps, you can start running commands:

Getting started with salt-sproxy: Usage

25https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

$ salt-sproxy ‘router1’ net.load_config \
 text=’set system ntp server 10.0.0.1’ test=True
router1:

already_configured:

 False
comment:

 Configuration discarded.
diff:

 [edit system]
 + ntp {
 + server 10.0.0.1;
 + }

loaded_config:
result:

 True

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

In the previous examples, we used Pillar data (i.e., information that we maintain
ourselves) as SLS files , to build the list of devices.

But there can be plenty of other sources where to load this data from, see
https://docs.saltstack.com/en/latest/ref/pillar/all/index.html, examples include:

- HTTP API
- Postgres / MySQL database
- Etcd, Consul, Redis, Mongo, etc.
- CSV file :-(

Getting started with salt-sproxy: Alternative setup

26https://salt-sproxy.readthedocs.io/en/latest/roster.html

https://docs.saltstack.com/en/latest/ref/pillar/all/index.html
https://salt-sproxy.readthedocs.io/en/latest/roster.html

Update /etc/salt/master to let salt-sproxy know that you want to load the list of
devices from NetBox:

Getting started with salt-sproxy: Alternative setup - NetBox

27https://salt-sproxy.readthedocs.io/en/latest/examples/netbox.html

roster: netbox

netbox:
 url: https://netbox.live/
 token: <token>

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/examples/netbox.html
https://netbox.live/

Salt has a natively available a REST API, which can be used in combination with
salt-sproxy to invoke commands over HTTP, without running Proxy Minions.

Enable the API:

Using salt-sproxy via the Salt REST API

28https://salt-sproxy.readthedocs.io/en/latest/salt_api.html

rest_cherrypy:
 port: 8080
 ssl_crt: /path/to/crt
 ssl_key: /path/to/key

/etc/salt/master

https://salt-sproxy.readthedocs.io/en/latest/salt_api.html

After these three easy steps, you can start running commands:

29https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

$ curl -sS localhost:8080/run -H 'Accept: application/x-yaml' \
 -d eauth='pam' \
 -d username='mircea' \
 -d password='pass' \
 -d client='runner' \
 -d fun='proxy.execute' \
 -d tgt=router1 \
 -d function='test.ping' \
 -d sync=True
return:
 router1: true

Using salt-sproxy via the Salt REST API

https://salt-sproxy.readthedocs.io/en/latest/quick_start.html

Getting started with salt-sproxy

30https://github.com/mirceaulinic/salt-sproxy

Everything available in Salt is possible through salt-sproxy, just that:

- salt-sproxy is much easier to install (compared to the typical Salt setup).
- You don’t have any Proxy Minions to manage.
- salt-sproxy is specially tailored for network automation use (but not limited

to).

-

See another example at:
https://asciinema.org/a/247726?autoplay=1

https://github.com/mirceaulinic/salt-sproxy
https://asciinema.org/a/247726?autoplay=1

Thank You!

Questions?

mu@do.co

